Math, asked by maazkazi6629, 11 months ago

cos(log x + e^{x}) dy/dx ज्ञात कीजिए

Answers

Answered by amitnrw
0

dy/dx = - ( 1/x  + eˣ)Sin(log x + eˣ)  यदि y  = cos(log x + eˣ)

Step-by-step explanation:

dy/dx ज्ञात कीजिए

y  = cos(log x + eˣ)

dy/dx  =   - Sin(log x + eˣ)  *  d(log x + eˣ)/dx

=> dy/dx  =  - Sin(log x + eˣ) * (  d(log x)/dx  + d(eˣ)/dx)

=>  dy/dx = - Sin(log x + eˣ) * ( 1/x  + eˣ)

=> dy/dx = - ( 1/x  + eˣ)Sin(log x + eˣ)

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Answered by Sharad001
26

Question :-

 \rm if  \: y \:  =  \cos( \log x +  {e}^{x} ) \:  \: then \: find \:  \frac{dy}{dx}  \\

Answer :-

\to \rm \frac{dy}{dx} =  -  \sin( \log x +  {e}^{x}  ) \bigg \{  \frac{1 + x {e}^{x} }{x}  \bigg \} \:  \\

Solution :-

We have ,

 \to \: \rm \: y \:  =  \cos( \log x +  {e}^{x} ) \: \:  \\  \\  \sf \: differentiate \: with \: respect \: to \: x \\  \\  \to \rm \frac{dy}{dx}  =  \frac{d}{dx} \:  \cos( \log x +  {e}^{x} ) \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \rm  \frac{d}{dx}  \cos x \:  =  -  \sin x} \\  \\  \to \rm  \frac{dy}{dx}  =  -  \sin(  \log x +  {e}^{x} ) \frac{d}{dx}  \{ \log x +  {e}^{x}  \} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \because \rm \frac{d}{dx}  \log x =  \frac{1}{x}  \:  \: and \:  \frac{d}{dx}  {e}^{x}  =  {e}^{x} } \\  \\  \to \rm \frac{dy}{dx} =  -  \sin( \log x +  {e}^{x} ) \{ \:  \frac{1}{x} \:  +  {e}^{x}     \} \\  \\  \to \rm \frac{dy}{dx} =  -  \sin( \log x +  {e}^{x}  ) \bigg \{  \frac{1 + x {e}^{x} }{x}  \bigg \}

Similar questions