Math, asked by shreyansraj9255, 11 months ago

\sqrt{e}^{\sqrt{x}} x > 0 dy/dx ज्ञात कीजिए

Answers

Answered by Sharad001
9

Question :-

 \sf \: if \: y \:  =  \sqrt{ {e}^{ \sqrt{x} } }  \:  \: then \: find \:  \frac{dy}{dx}  \\

Answer :-

\boxed{  \to \sf \frac{dy}{dx}  =  \frac{ {e}^{ \sqrt{ x } } }{4 \sqrt{x {e}^{ \sqrt{x} } } } } \:

Solution :-

We have ,

 \to \sf y =  \sqrt{ {e}^{ \sqrt{x} } }  \\  \\ \sf \red{ differentiate \: with \: respect \: to \: x} \\  \\  \to \sf \frac{dy}{dx}  =  \frac{d}{dx}  \sqrt{ {e}^{ \sqrt{x} } }  \\  \\ \boxed{  \because \sf \frac{d}{dx}  \sqrt{x } = {  \frac{1}{2 \sqrt{x} } } } \\  \\  \to \sf  \frac{dy}{dx}  =  \frac{1}{2 \sqrt{ {e}^{ \sqrt{x} } } }  \: \frac{d}{dx}  {e}^{ \sqrt{x} }  \\  \\   \boxed{ \because \sf \frac{d}{dx} {e}^{x}  =  {e}^{x} } \\  \therefore \\  \\  \to \sf  \frac{dy}{dx}  =  \frac{1}{2 \sqrt{ {e}^{ \sqrt{x} } } }   {e}^{ \sqrt{x} }  \:  \frac{d}{dx}  \sqrt{x}  \\  \\  \to \sf  \frac{dy}{dx}  =  \frac{ {e}^{ \sqrt{x} } }{2 \sqrt{ {e}^{ \sqrt{x} } } }  \times  \frac{1}{2 \sqrt{x} }  \\  \\  \sf  \frac{dy}{dx}  =  \frac{ {e}^{ \sqrt{x} } }{4 \sqrt{x}  \sqrt{ {e}^{ \sqrt{x} } } }  \\  \\ \boxed{  \to \sf \frac{dy}{dx}  =  \frac{ {e}^{ \sqrt{ x } } }{4 \sqrt{x {e}^{ \sqrt{x} } } } }

Answered by amitnrw
0

dy/dx  =  \frac{{e^{\sqrt{x}} }}{4\sqrt{xe^{\sqrt{x}} }}  

Step-by-step explanation:

dy/dx ज्ञात कीजिए

y  = \sqrt{e^{\sqrt{x}} }

dy/dx  = d(\sqrt{e^{\sqrt{x}} })/dx

=> dy/dx  =  \frac{1}{2\sqrt{e^{\sqrt{x}} }} \times d({e^{\sqrt{x}} })/dx

=>  dy/dx  =  \frac{1}{2\sqrt{e^{\sqrt{x}} }} \times ({e^{\sqrt{x}} }) \times d({\sqrt{x}} })/dx

=> dy/dx  =  \frac{1}{2\sqrt{e^{\sqrt{x}} }} \times ({e^{\sqrt{x}} }) \times \frac{1}{2\sqrt{x} }

=> dy/dx  =  \frac{{e^{\sqrt{x}} }}{4\sqrt{x} \sqrt{e^{\sqrt{x}} }}

=> dy/dx  =  \frac{{e^{\sqrt{x}} }}{4\sqrt{xe^{\sqrt{x}} }}

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Similar questions