Math, asked by saikutumbaka7157, 1 year ago

y = sin^{-1} 2x \sqrt{1-x^{2}} dy/dx ज्ञात कीजिए

Answers

Answered by amitnrw
0

dy/dx =   2/√ (1 -  x²)  यदि y = Sin⁻¹(2x√(1 - x²))

Step-by-step explanation:

dy/dx ज्ञात कीजिए

y = Sin⁻¹(2x√(1 - x²))

=>Siny  = 2x√ (1 -  x²)

=> Cosy (dy/dx)  =   (2x(1/2)/√ (1 -  x²) )(-2x)  + 2√ (1 -  x²)

=> Cosy(dy/dx)  =  -2x²/√ (1 -  x²) + 2√ (1 -  x²)

=> Cosy(dy/dx)  =  (-2x²  +2 (1 - x²) )/ √ (1 -  x²)

=> Cosy(dy/dx)  =  2(1 - 2x²)/√ (1 -  x²)

Siny  =2x√ (1 -  x²)

Cosy = √ (1 - Sin²y)     = √( 1 - (2x√ (1 -  x²))²)

= √ (1  - 4x²(1 - x²))

=√ (4x⁴  - 4x² + 1)

= (1 - 2x²)

=> (1 - 2x²) dy/dx = 2(1 - 2x²)/√ (1 -  x²)

=> dy/dx =   2/√ (1 -  x²)

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Answered by Sharad001
8

Question :-

 \sf \: if \: y = sin^{-1}( 2x \sqrt{1-x^{2}}) \:  \: then \: find \:  \frac{dy}{dx}  \\

Answer :-

 \to \boxed{ \sf  \frac{dy}{dx} =  \frac{2}{ \sqrt{1 -  {x}^{2} } }  } \:

Solution :-

We have ,

 \sf \longmapsto \: y = sin^{-1}( 2x \sqrt{1-x^{2}}) \:  \\  \\ let \sf \: \: x =  \sin \theta \:  \\  \\   \:  \to \:  \theta \sf =  { \sin}^{ - 1} x \\  \\ \bf hence \:  \\  \\  \longmapsto \sf y =  { \sin}^{ - 1} (2 \sin \theta \:  \sqrt{1 -  { \sin}^{2} \theta } ) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf  \because \: 1 -  { \sin}^{2}  \theta =   { \cos}^{2}  \theta} \\  \\  \to \sf y =  { \sin}^{ - 1} \: (2 \sin \theta \:  \sqrt{ { \cos}^{2}  \theta}  ) \\  \\  \to \sf \: y =  { \sin}^{ - 1} (2 \sin \theta \cos \theta \: ) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \sf \sin2 \theta \:  =2 \sin \theta \cos  \theta} \\  \\  \to \sf \: y =  { \sin}^{ - 1} ( \sin2 \theta) \\  \\  \sf \to \: y = 2 \theta \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \boxed{ \because \:  \theta \sf =  { \sin}^{ - 1} x} \\  \\  \to \sf y = 2  { \sin}^{ - 1}x  \\  \\ \bf differentiate \: with \: respect \: to \: x \\  \\  \to \sf  \frac{dy}{dx}  = 2 \frac{d}{dx}  { \sin}^{ - 1} x \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \sf \frac{d}{dx}  { \sin}^{ - 1} x =  \frac{1}{ \sqrt{1 -  {x}^{2} } } } \\  \\  \to \boxed{ \sf  \frac{dy}{dx} =  \frac{2}{ \sqrt{1 -  {x}^{2} } }  }

Similar questions