tan^{-1} 2x/1- x^{2} dy/dx ज्ञात कीजिए
Answers
Answer:
2 / ( 1 + x² )
Step-by-step explanation:
Given----> y = tan⁻¹ { 2x / ( 1 - x² ) }
To find ----> Derivative of given function.
Solution----> ATQ,
y = tan⁻¹ { 2x / ( 1 - x² ) }
Let, x = tanθ => θ = tan⁻¹ x
=> y = tan⁻¹ { 2tanθ / ( 1 - tan²θ ) }
We know that , tan2θ = 2tanθ / ( 1 - tan²θ ) , applying it we get,
= tan⁻¹ ( tan2θ )
= 2 θ
=> y = 2 tan⁻¹ x
Differentiating with respect to x , we get,
=> dy/dx = 2 d/dx ( tan⁻¹ x )
= 2 { 1 / ( 1 + x² ) }
=> dy/dx = 2 / ( 1 + x² )
Additional information---->
1) d/dx ( Sin⁻¹x ) = 1 / √(1 - x² )
2) d/dx ( Cos¹x ) = - 1 / √(1 - x² )
3) d/dx ( Sec⁻¹x ) = 1 / x √(x² - 1 )
4) d/dx ( Cosec⁻¹x ) = -1/x√(x² - 1)
dy/dx = 2/(1 + x²) यदि y = Tan⁻¹(2x/(1 - x²))
Step-by-step explanation:
dy/dx ज्ञात कीजिए
y = Tan⁻¹(2x/(1 - x²))
=> Tany =2x/ (1 - x²)
=> Sec²y (dy/dx) = (2x (-1)/(1 - x²)²)(-2x) + 2/(1 - x²)
=> (1 + Tan²y)(dy/dx) = 4x²/(1 - x²)² + 2/(1 - x²)²
=> (1 + Tan²y)(dy/dx) = ( 4x² + 2 - 2x²)/(1 - x²)²
=> (1 + Tan²y)(dy/dx) = (2x² + 2)/(1 - x²)²
=> (1 + Tan²y)(dy/dx) = 2(x²+ 1)/(1 - x²)²
1 + Tan²y = 1 + (2x/ (1 - x²))²
=> 1 + Tan²y = (1 + x⁴ - 2x² + 4x²)/(1 - x²)²
=> 1 + Tan²y = (1 + x²)²/(1 - x²)²
(1 + x²)²/(1 - x²)² (dy/dx) = 2(x²+ 1)/(1 - x²)²
=> dy/dx = 2/(1 + x²)
और अधिक जानें :
sin(x²+5)"
brainly.in/question/15286193
sin (ax+b) फलन का अवकलन कीजिए
brainly.in/question/15286166