Math, asked by vinaybhutada04, 1 year ago

Log root 27 + log8 + log root 1000 /log120=3\2


HermioneWatson: log 120 divides the whole expression or only log root 1000?
vinaybhutada04: It divides the whole expression
HermioneWatson: okay I'll try :)
HermioneWatson: and is it log root 8 or only log 8?
vinaybhutada04: It is log 8 only
vinaybhutada04: plz ans me it’s urgent
HermioneWatson: ok
vinaybhutada04: Plz ans
HermioneWatson: Should we have to prove this??

Answers

Answered by pinquancaro
50

Consider the LHS as:

\frac{\log {\sqrt27} + \log 8 + \log \sqrt{1000}}{\log{120}}

= \frac{\log {27^\frac{1}{2}} + \log 2^3 + \log {1000^\frac{1}{2}}}{\log{(2 \times 2 \times 2 \times 3 \times 5)}}

Using the laws of logarithmic which states, \log m^n = n \log m

= \frac{\frac{1}{2} \log(3^3) + \log(2^3) + \frac{1}{2} \log(10^3)}{\log(2^3 \times 3 \times 5)}

=\frac{\frac{3}{2} \log3 + 3 \log(2) + \frac{3}{2} \log(10)}{\log(2^3)+\log3+ \log 5}

= \frac{\frac{3}{2} \log3 + 3 \log(2) + \frac{3}{2} \log(2 \times 5)}{3 \log2+\log3+ \log 5}

= \frac{\frac{3}{2} \log3 + 3 \log2 + \frac{3}{2} (\log2 + \log 5)}{3 \log2+\log3+ \log 5}

= \frac{\frac{3}{2} \log3 + 3 \log2 + \frac{3}{2} \log2 +\frac{3}{2} \log 5}{3 \log2+\log3+ \log 5}

= \frac{\frac{3}{2} \log3 + \frac{9}{2} \log2 +\frac{3}{2} \log 5}{3 \log2+\log3+ \log 5}

= \frac{3}{2}\frac{( \log3 + 3 \log2 + \log 5)}{3 \log2+\log3+ \log 5}

= \frac{3}{2}

=RHS

Hence, proved.

Answered by nikolatesla2
25
hope it helps to u to
Attachments:
Similar questions