Math, asked by padmasreeariveni, 1 year ago

log root5 to the base cubeth root 5​

Attachments:

Answers

Answered by kaushik05
12

  \huge \boxed{ \red{\mathfrak{solution}}}

To find the value of

 log_{ \sqrt[3]{5} }( \sqrt{5} )

We have to use the formula :

 \boxed{  \bold{log_{ {a}^{x} }( {b}^{y} )  =  \frac{y}{x}   log_{a}(b) }}

and

 \boxed{  \bold{log_{a}(a)  = 1}}

 \rightarrow log_{  \sqrt[3]{5}  }( \sqrt{5} )  \\  \\  \rightarrow \:  log_{ {5}^{ \frac{1}{3} } }( {5}^{ \frac{1}{2} } )  \\  \\  \rightarrow \:  \frac{1}{2}  \times  \frac{3}{1}  log_{5}(5)  \\  \\  \rightarrow \:  \frac{3}{2 }  \times 1 \\  \\  \rightarrow \:  \frac{3}{2}

Hence the value is

 \huge \boxed{  \bold{ \blue{\mathfrak{ \frac{3}{2}}} }}

Similar questions