Math, asked by akibutte24, 8 months ago

log[(sectheta +tan theta) (sectheta -tantheta)]=__
a)1
b)0
c)sec^2theta - tan^2theta
d)not defined

Answers

Answered by Mounikamaddula
7

Answer:

Answer:

  • zero

Formulae used:

  • Sec²x-tan²x=1

Solution:

It is given that,

log[(sectheta+tan theta)(sectheta-tan theta)]

log[(sec² theta-tan² theta)]

By using the identity,

log[(1)]

0

Answered by Anonymous
1

Answer :-

  • Answer is zero.

Step by Step Explanation :-

{log\:(sec\:\theta \: + tan \:\theta)(sec\:\theta \: - tan \:\theta)}

We know that :-

{(sec \: \theta + tan \: \theta)(sec \: \theta - tan \: \theta) =  {sec}^{2} \theta -  {tan}^{2} \theta \: }

And ,

⇒{sec}^{2} \theta -  {tan}^{2} \theta \:  = 1

So ,

\sf{⇒log\:\big((sec\:\theta \: + tan \:\theta)(sec\:\theta \: - tan \:\theta)\big)}

\sf{⟹ log\:({sec}^{2} \theta -  {tan}^{2} \theta \:)}

\bullet\sf{log\:(1)}

And we know that log(1) = 0

So the answer is zero.

Similar questions