log tan 1+log tan 2 + log tan 3 +log 4 + .....+log tan 89 =
1,2,3,4,... , 89 are angles in degrees
Answers
Answered by
150
Hi,
logtan1+logtan2+logtan3+……………….+logtan89
=log(tan1×tan2×tan3×……………×tan89)
since loga+logb=log(a×b)
we know that tan89=tan(90-1)=cot1
Tan89=cot1
tan88=cot2
tan87=cot3
.
.
.
.
.
.
We know that tan@×cot@=1
Therefore,
tan1×tan89=1
tan2×tan88=2
.
.
.
.
Therefore the given question will be
log(1×1×1×1×1............×1)=log1=0.
Hope you find this helpful.
logtan1+logtan2+logtan3+……………….+logtan89
=log(tan1×tan2×tan3×……………×tan89)
since loga+logb=log(a×b)
we know that tan89=tan(90-1)=cot1
Tan89=cot1
tan88=cot2
tan87=cot3
.
.
.
.
.
.
We know that tan@×cot@=1
Therefore,
tan1×tan89=1
tan2×tan88=2
.
.
.
.
Therefore the given question will be
log(1×1×1×1×1............×1)=log1=0.
Hope you find this helpful.
ChPraneeth:
did you understand it
Answered by
84
we know that log a + log b = log ab.
=>log ( tan 1× tan 2× tan 3 × ............tan 89)
=>log ( tan 1 × tan 2×....tan 44 ×cot 44× cot 43....cot 2 × cot 1). {tan a = cot 90-a}
=> log( 1×1×1×1...×1)
=>log (1)
=> 0.
=>log ( tan 1× tan 2× tan 3 × ............tan 89)
=>log ( tan 1 × tan 2×....tan 44 ×cot 44× cot 43....cot 2 × cot 1). {tan a = cot 90-a}
=> log( 1×1×1×1...×1)
=>log (1)
=> 0.
Similar questions