Math, asked by TITUSpaul, 1 year ago

log tan 10° + log tan 80º =
A) O
B) 1
HASHYAM'S​

Answers

Answered by pulakmath007
10

\displaystyle \sf{log(tan {10}^{ \circ})  +  log(tan {80}^{ \circ})  } =  \bf \: 0

Given :

\displaystyle \sf{log(tan {10}^{ \circ})  +  log(tan {80}^{ \circ})  }

To find :

The value of the expression is

A) 0

B) 1

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{log(tan {10}^{ \circ})  +  log(tan {80}^{ \circ})  }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{log(tan {10}^{ \circ})  +  log(tan {80}^{ \circ})  }

\displaystyle \sf{ = log(tan {10}^{ \circ})  +  log \bigg(tan( {90}^{ \circ}  -  {10}^{ \circ})\bigg)  }

\displaystyle \sf{  =log(tan  \: {10}^{ \circ}) +  log(cot \:  {10}^{ \circ}) }

\displaystyle \sf{ = log(tan {30}^{ \circ} \times cot {10}^{ \circ})  \:  \:  \: \bigg[ \:  \because \:log \: a + log \: b = log \: (ab) \bigg] }

\displaystyle \sf{   =log \: \bigg(  tan  \: {10}^{ \circ} \times  \frac{1}{tan  \: {10}^{ \circ}}  \bigg) }

\displaystyle \sf{  = log\: 1 }

 = 0

Hence the correct option is A) 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

#SPJ3

Answered by KaurSukhvir
0

Answer:

The value of  (log tan10° + log tan80°) will be equal to zero.

Step-by-step explanation:

We know that logA+logB=logAB

The given expression:

log (tan 10^{o}) + log (tan 80^{o})

        = log (tan 10^{o}) + log (tan (90^{o}-10^{o}))\\ = log (tan 10^{o}) + log (cot10^{o})            ∵  [tan(90^{o}-\theta )=cot\theta]

        =log (tan10^{o}*cot10^{o})\\                                 ∵ [tan\theta=\frac{1}{cot\theta}]

        =log(tan10^{o}*\frac{1}{tan10^{o}}) \\ =log1\\ =0

Therefore the value of the given expression is equal to zero. So the option A is correct.

Similar questions