Math, asked by JoydipGhosh, 1 year ago

log
log {8}^{x}  + log {4}^{x}  + log {2}^{x}  = 11

Answers

Answered by Swarup1998
10
\boxed{\underline{\textsf{Formulas :}}}

1.\:\log\:a^{b}=b\log\:a

2.\: \log\:a+\log\:b+\log\:c = \log\:(abc)

\boxed{\underline{\textsf{Solution :}}}

\textsf{Now,}\:\log8^{x}+\log4^{x}+\log2^{x}=11

\to x\log8+x\log4+x\log2=11

\to x (\log8+\log4+\log2)=11

\to x\log(8*4*2)=11

\to x\log64=11

\to x = \frac{11}{\log64}

\to x = \frac{11}{1.8},\:\textsf{since}\:\log64\approx1.8

\to \boxed{\bold{x \approx 6.1}}

\textsf{which is the required solution.}

\underline{\textsf{Finding log64}}

\log64

=\log2^{6}

=6\log2

\approx 6*0.30,\:since\:\log2 \approx 0.30

\bold{\approx 1.8}

Noah11: Perfect answer Bhaiya! ^_^
Similar questions