Math, asked by shivaninandani4655, 3 months ago

log x= 3log2 +log25− log20

Answers

Answered by anindyaadhikari13
7

\texttt{\textsf{\large{\underline{Solution}:}}}

Given:

  • ㏒₁₀(x) = 3 ㏒₁₀(2) + ㏒₁₀(25) - ㏒₁₀(20)

To Find:

  • The value of x ?

When no base is written, we assume that the base is 10.

Therefore,

→ ㏒₁₀(x) = 3 ㏒₁₀(2) + ㏒₁₀(25) - ㏒₁₀(20)

Using formula n ㏒(x) = ㏒(xⁿ) we get,

→ ㏒₁₀(x) = ㏒₁₀(2³) + ㏒₁₀(25) - ㏒₁₀(20)

→ ㏒₁₀(x) = ㏒₁₀(8) + ㏒₁₀(25) - ㏒₁₀(20)

Using formula ㏒(x) + ㏒(y) = ㏒(xy), we get,

→ ㏒₁₀(x) = ㏒₁₀(8 × 25) - ㏒₁₀(20)

→ ㏒₁₀(x) = ㏒₁₀(200) - ㏒₁₀(20)

Using formula ㏒(x) - ㏒(y) = ㏒(x/y), we get,

→ ㏒₁₀(x) = ㏒₁₀(200/20)

→ ㏒₁₀(x) = ㏒₁₀(10)

Comparing both side, we get,

→ x = 10

Δ So, the value of x is 10.

\texttt{\textsf{\large{\underline{Answer}:}}}

  • x = 10.

•••♪

Similar questions