log x= 3log2 +log25− log20
Answers
Answered by
7
Given:
- ㏒₁₀(x) = 3 ㏒₁₀(2) + ㏒₁₀(25) - ㏒₁₀(20)
To Find:
- The value of x ?
When no base is written, we assume that the base is 10.
Therefore,
→ ㏒₁₀(x) = 3 ㏒₁₀(2) + ㏒₁₀(25) - ㏒₁₀(20)
Using formula n ㏒(x) = ㏒(xⁿ) we get,
→ ㏒₁₀(x) = ㏒₁₀(2³) + ㏒₁₀(25) - ㏒₁₀(20)
→ ㏒₁₀(x) = ㏒₁₀(8) + ㏒₁₀(25) - ㏒₁₀(20)
Using formula ㏒(x) + ㏒(y) = ㏒(xy), we get,
→ ㏒₁₀(x) = ㏒₁₀(8 × 25) - ㏒₁₀(20)
→ ㏒₁₀(x) = ㏒₁₀(200) - ㏒₁₀(20)
Using formula ㏒(x) - ㏒(y) = ㏒(x/y), we get,
→ ㏒₁₀(x) = ㏒₁₀(200/20)
→ ㏒₁₀(x) = ㏒₁₀(10)
Comparing both side, we get,
→ x = 10
Δ So, the value of x is 10.
- x = 10.
•••♪
Similar questions