Math, asked by Lucky100000, 7 months ago

∫log x dx,X belongs to (0,∞).

Answers

Answered by Asterinn
2

\displaystyle \int  log(x) dx

We will integrate the above expression by parts i.e. u∫v dx −∫u' (∫v dx) dx

 \implies\displaystyle \int 1 \times  log(x) dx

Let , u = log x and v = 1

 \implies\displaystyle log(x)  \int  1 \:  dx - \int (\dfrac{d( log(x) )}{dx}  \times \int 1dx)dx

\implies\displaystyle log(x)  x\:  - \int (\dfrac{1}{x}  \times x)dx

\implies\displaystyle \: x log(x)  \:  - \int ({1})dx

\implies\displaystyle \: x log(x)  \:  -  x + c

where c is constant.

Answer :

\displaystyle \: x log(x)  \:  -  x + c

__________________

Learn more :-

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

____________________

Answered by Anonymous
0

Given ,

The function is log(x)

Integrating function wrt to x , we get

 \tt \mapsto \int{ log(x) \: dx}

 \tt \mapsto \int{  log(x) \times 1 \: dx}

We know that ,

 \tt \int uv \:  \: dx = u \int{ v } \:  \: dx -  \int{  \bigg\{  \frac{du}{dx}  \int{v \:  \: dx}  \bigg\}} \:  \: dx

Where ,

u = first function

v = second function

Thus ,

Let , log(x) as a first function and 1 as a second function

 \tt \mapsto log(x) \int{  1 \: dx} - \int{  \bigg\{  \frac{ d \{\log(x) \}}{dx}  \int{1 \:  \: dx}  \bigg\}} \:  \: dx

 \tt \mapsto xlog(x) \int{ \frac{1}{x}  \times x} \:  \: dx

 \tt \mapsto xlog(x) - \int{ 1} \:  \: dx

 \tt \mapsto xlog(x) - x + c

Remmember :

 \tt \int{ {x}^{n} } \:  \: dx =  \frac{ {(x)}^{n + 1} }{n + 1}

 \tt \frac{d \{log(x) \}}{dx}  =  \frac{1}{x}

________________ Keep Smiling

Similar questions