Math, asked by kritikriti055, 5 months ago

log x =log3 + 2log2 - 3/4log16

solve the question

wrong answer would be reported

Answers

Answered by usjadhav2001
3

Step-by-step explanation:

follow me

make as brainliest ans

likes my All ans

Attachments:
Answered by Arceus02
2

Given:-

  •  \sf \:  log(x)  =  log(3)  + 2 log(2) -  \dfrac{3}{4}  log(16)

\\

To find:-

  • The value of x

\\

Answer:-

Given that,

 \sf \:  log(x)  =  log(3)  + 2 log(2) -  \dfrac{3}{4}  log(16)

 \red \bigstar \boxed{ \sf{a log(b)  =  log( {b}^{a} ) }}

 \sf \longrightarrow  log(x)  =  log(3)  +  log(2 {}^{2} ) -    log(16 {}^{3/4} )

 \sf \longrightarrow  log(x)  =  log(3)  +  log(4 ) -    log \{(  { {2}^{4}) }^{3/4}    \}

 \sf \longrightarrow  log(x)  =  log(3)  +  log(4 ) -    log( {2}^{3}  )

 \sf \longrightarrow  log(x)  =  log(3)  +  log(4 ) -    log( 8 )

 \blue \bigstar \boxed{ \sf{ log(a) +  log(b)   =  log( ab ) }}

 \sf \longrightarrow  log(x)  =  log(3 \times 4) -    log( 8 )

\sf \longrightarrow  log(x)  =  log(12) -    log( 8 )

 \green \bigstar \boxed{ \sf{ log(a)  -   log(b)   =    log  \Bigg( \dfrac{a}{b} \Bigg)   }}

\sf \longrightarrow  log(x)  =  log\Big( \dfrac{12}{8} \Big)

\sf \longrightarrow  log(x)  =  log \Big( \dfrac{3}{2} \Big)

On comparing both sides,

 \longrightarrow \underline{ \underline{ \sf{ \green{ x =  \dfrac{3}{2} }}}}

Similar questions