Chemistry, asked by JatinBansal8026, 11 months ago

Log2(log5(625)) find the value

Answers

Answered by pavanteja836
5

Answer:

2

Explanation:

log2(log5^5^4

log2^4

log2^2^2=2

Answered by Anonymous
180

Need To Find Out:-

  • Value of \sf  \:  ( log_{2}( log_{5}(625) )

Solution :-

We are given :-

\sf :\implies \ \: ( log_{2}( log_{5}(625) )

\sf \underline\green {Let \: consider:- }

\sf\purple{ :\implies \: log_{5}(625)}\\

 \sf \:  =  \:  \:  log_{5}(5 \times 5 \times 5 \times 5)\\

 \sf \:  =  \:  \:  log_{5}( {5}^{4} ) \\

 \sf \:  =  \:  \: 4 \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf{\green{\{ \because \:  log_{ {a}^{p} }( {a}^{q}) = \dfrac{q}{p} \}}}

 \boxed{\sf\purple{:\implies \: log_{5}(625)  = 4}}\\\\

\sf \underline\green {Now:-}

\sf\purple{:\implies \ \:  log_{2}( log_{5}(625) )}\\

 \sf \:  =  \:  \:  \:   log_{2}( 4 ) \\

 \sf \:  =  \:  \:  \:  log_{2}( 2 \times 2 ) \\

 \sf \:  =  \:  \:  \:   log_{2}( {2}^{2}) \\

 \sf\:  =  \:  \:  2\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{\green{\{ \because \:  log_{ {a}^{p} }( {a}^{q}) = \dfrac{q}{p} \}}}\\\\

\sf\therefore\pink{  \: \:  ( log_{2}( log_{5}(625) )   = 2}\\

Know More :-

  • \sf \:logx + logy = logxy
  • \sf \:logx  -  logy = log \dfrac{x}{y}
  • \sf \:log \:  {x}^{y}  = y \: logx
  • \sf\: log_{x}(x)  = 1
  • \sf \: log_{x}(y)  = \dfrac{logy}{logx}
  • \sf \:log1 = 0
  • \sf\: {e}^{ log(x)} =  x
  • \sf\: {e}^{ ylog(x)} =   {x}^{y}
  • \sf\: {x}^{ log_{x}(y) }  = y
  • \sf \: {x}^{z log_{x}(y) }  =  {y}^{z}\\
Similar questions