Math, asked by llakshmin98, 9 months ago

log8+log25+2log3-log18​

Answers

Answered by nandi101
0

Answer:

2

Step-by-step explanation:

To solve this problem, first you have to used log formula.

Given:

log 8+ log 25+2 log 3- log 18

Solutions:

Used log rules.

\Large\boxed{\textnormal{LOG RULES FORMULA}}

LOG RULES FORMULA

\displaystyle \log _c\left(a\right)+\log _c\left(b\right)=\log _c\left(ab\right)log

c

(a)+log

c

(b)=log

c

(ab)

\displaystyle\log _{10}\left(8\right)+\log _{10}\left(25\right)=\log _{10}\left(8\cdot \:25\right)log

10

(8)+log

10

(25)=log

10

(8⋅25)

\displaystyle \log _{10}\left(8\cdot \:25\right)+2\log _{10}\left(3\right)-\log _{10}\left(18\right)log

10

(8⋅25)+2log

10

(3)−log

10

(18)

Multiply the numbers from left to right.

\displaystyle 8*25=2008∗25=200

\displaystyle \log _{10}\left(200\right)+2\log _{10}\left(3\right)-\log _{10}\left(18\right)log

10

(200)+2log

10

(3)−log

10

(18)

\Large\boxed{{a\log _c\left(b\right)=\log _c\left(b^a\right)}}

alog

c

(b)=log

c

(b

a

)

\displaystyle 2\log _{10}\left(3\right)=\log _{10}\left(3^2\right)2log

10

(3)=log

10

(3

2

)

$$\displaystyle \log _{10}(200)+\log _{10}\(3^2)-\log _{10}(18)$$

$$\displaystyle \log _{10}\left(200\right)+\log _{10}\left(3^2\right)=\log _{10}\left(3^2\cdot \:200\right)$$

$$\displaystyle \log _{10}\left(3^2\cdot \:200\right)-\log _{10}\left(18\right)$$

Solve.

Multiply.

$$\displaystyle 3^2*200=1800$$

$$\displaystyle \log _{10}\left(1800\right)-\log _{10}\left(18\right)$$

$$\displaystyle \log _{10}\left(\frac{1800}{18}\right)$$

Divide.

$$\displaystyle 1800\div18=100$$

$$\log _{10}\left(100\right)$$

$$\displaystyle 10^2=10*10=100$$

$$\displaystyle \log _{10}\left(10^2\right)$$

$$\displaystyle \log _{10}\left(10^2\right)=2\log _{10}\left(10\right)$$

$$\displaystyle 2\log _{10}\left(10\right)$$

$$\displaystyle \log _{10}\left(10\right)=1$$

Multiply the numbers from left to right.

$$\displaystyle 2*1=\boxed{2}$$

Therefore the correct answer is 2.

Similar questions