Math, asked by piu33, 1 year ago

loga+loga^2+loga^3+...+loga^n

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{log\,a+log\,a^2+log\,a^3+\;.\;.\;.\;.+log\,a^n}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{log\,a+log\,a^2+log\,a^3+\;.\;.\;.\;.+log\,a^n}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{log\,a+log\,a^2+log\,a^3+\;.\;.\;.\;.+log\,a^n}

\textsf{Using Power rule of logarithm, we get}

\mathsf{=log\,a+2\,log\,a+3\,log\,a+\;.\;.\;.\;.+n\,log\,a}

\textsf{By taking}\;\mathsf{log\,a}\;\textsf{as common}

\mathsf{=log\,a\,(1+2+3+\;.\;.\;.\;.+n)}

\mathsf{=log\,a\,(Sum\;of\;first\;n\;natural\;numbers)}

\mathsf{=log\,a\,\left(\dfrac{n(n+1)}{2}\right)}

\implies\boxed{\mathsf{log\,a+log\,a^2+log\,a^3+\;.\;.\;.\;.+log\,a^n=log\,a\,\left(\dfrac{n(n+1)}{2}\right)}}

\underline{\textbf{Formulae used:}}

\boxed{\begin{minipage}{6cm}$\\\;\;\textbf{Power rule:}\;\mathsf{log_aM^r=r\,log_aM}\\$\end{minipage}}

Similar questions