Math, asked by arpanghosal374, 6 months ago


logarithm function ​

Attachments:

Answers

Answered by ITZBFF
79

 \: \: \boxed{\boxed{\sf{\mapsto \: Let \: us \: understand}}}

 \mathsf \red{value \: of \:  \:  \:  log_{2}(10) \:  :  } \\  \\  \mathsf{log_{2}(10) \:  =  \:  \frac{ log(10) }{ log(2) } } \\  \ \\  \mathsf \red{  \mapsto \: log(10) = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\   \mathsf \red{ \mapsto \:  log(2) = 0.3010  \:  \: } \\  \\

\boxed{\mathsf{ log_{2}(10)  =  \frac{1}{0.3010} \:  =  \: 3.321} }

 \mathsf \red{value \: of \:  \:  \:  log_{8}(125) \:  :  } \\  \\  \mathsf{ log_{8}(125) =  \frac{ log(125) }{ log(8) }  } \\  \\  \mathsf \red{ \mapsto log(125) \:   = \: 2.096 } \\  \\ \mathsf \red{  \mapsto log(8)  \:  =  \:0.903 \:  \:  \:  \:  \:  } \\  \\  \mathsf{ log_{8}(125) \:  =  \:  \frac{log(125)}{ log(8) }  } \\  \\

\boxed{\mathsf{ log_{8}(125) \:  =  \: \frac{2.096}{0.903}  = 2.321 }}

 \mathsf \red{  log_{2}(10)  -  log_{8}(125) =  } \\  \\  \mathsf{ \mapsto \: 3.321 \:  -  \:2.321 = 1 } \\  \\  \: \boxed{\mathsf {  log_{2}(10)  -  log_{8}(125) \:  =  \: 1 }}

\mathsf{}

{\sf{\fcolorbox{black}{pink}{© \: ITZBFF}}}

Similar questions