Math, asked by redsoul, 1 year ago

Logarithm qn. plz help​

Attachments:

Answers

Answered by waqarsd
4

  \frac{ log_{a}(m) }{ log_{ab}(m) } \\  \\   =  \frac{ log_{m}(ab) }{ log_{m}(a) }  \\  \\   =  log_{a}(ab)  \\  \\  =  log_{ a }(a)  +  log_{a}(b)  \\  \\  = 1 +  log_{a}(b)  \\  \\ formulae \\  \\  log_{x}(y)  =  \frac{1}{ log_{y}(x) }  \\  \\  \frac{ log_{e}(x) }{ log_{e}(y) }  =   log_{y}(x)  \\  \\  log(xy)  =  log(x)  +  log(y)  \\  \\  log_{x}(x)  = 1 \\  \\

hope it helps.

Answered by Anonymous
8

HEYA \:  \\  \\  log_{a}(m)  \div  log_{ab}(m)  = 1 +  log_{a}(b)  \\  \\ l.h.s \\    log_{a}(m)  \div  log_{ab}(m)  \\  \\  log_{a}(m)  \  \:  \:   \times \:  \:  \:  log_{a}(ab)   \\  -  -   -  - -  -  -  -  -   \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   log_{a}(m)  \\  becoz \:  \:  \:  log_{x}(y)  =  log_{t}(y)  \div  log_{t}(x)  \\  \\  =  log_{a}(ab)  \\  \\  =  log_{a}(a)  +   log_{a}(b)  \\ becoz \:  \:  log_(pq)  =  log(p)  +  log(q)  \\  \\  = 1 +   log_{a}(b)  \\ becoz \:  \:  \:  log_{x}(x)  = 1 \\  \\  \\ therefore \:  \: l.h.s = 1 +  log_{a}(b)

Similar questions