Math, asked by pawarnikitaa97, 11 months ago

logarithmic differenciation y=sinx rais to x​

Answers

Answered by meowwww75
1
Hey !

Given,

 \mathbf{\underline{y = (\sin\, x)^{x}}}


Apply natural log. ln on both sides

ln \: y = ln\: (\sin\, x)^{x} \:


From logarithmic property, we have

\huge{\fbox{\mathbf{log\, a^{b} = b\cdot log\, a}}} \:


 \implies \: ln \: y =x \, ln\: (\sin\, x) \:


Differentiate on both sides wrt x

Here y is a f(x) , so y is another variable.


Apply uv rule for RHS

\huge{\fbox{\mathbf{d{uv} = vu' + uv'}}} \:


where u and v are function of same variables and

u' and v' are it's derivatives respectively


 \implies \dfrac{1}{y} \dfrac{dy}{dx} =[\cos \, x\, \dfrac{1}{\sin\, x}] \cdot x + 1 \cdot. ln\, (\sin\, x) \\ \\ <br /><br />\implies \dfrac{1}{y} \dfrac{dy}{dx} = x \cot\, x + ln\, (sin\, x) \\ \\ <br /><br />\implies \dfrac{dy}{dx} = x \cot\, x + ln\, (sin\, x) \times y<br /><br />

Substitute y in RHS


 \underline{\underline{\implies \mathsf{\dfrac{dy}{dx} = \left(x \cot\, x + ln\, (sin\, x)\right) \cdot [(\sin\, x)^{x}]}}}



Meowwww xD
Similar questions