Math, asked by yashpandeyup, 11 months ago

logb^a.logc^b.logd^c=logd^a​

Answers

Answered by pulakmath007
12

SOLUTION

TO PROVE

 \displaystyle \sf{ log_{b}(a). log_{c}(b).log_{d}(c) = log_{d}(a)}

FORMULA TO BE IMPLEMENTED

We are aware of the formula on logarithm that

 \sf{1.  \:  \: \:  log( {a}^{n} ) = n log(a)  }

 \sf{2. \:  \:  log(ab) =  log(a)   +  log(b) }

 \displaystyle \sf{3. \:  \:  log \bigg( \frac{a}{b}  \bigg)  =  log(a) -  log(b)  }

 \sf{4. \:  \:   log_{a}(a)   = 1}

 \displaystyle \sf{ 5. \:  \: log_{b}(a) =  \frac{  log(a) }{ log(b) }}

EVALUATION

We have to prove that

 \displaystyle \sf{ log_{b}(a). log_{c}(b).log_{d}(c) = log_{d}(a)}

LHS

 \displaystyle \sf{ =  log_{b}(a). log_{c}(b).log_{d}(c) }

 \displaystyle \sf{ =  \frac{ log(a) }{ log(b) } . \frac{ log(b) }{ log(c) }. log_{d}(c) } \:  \:  \:  \:  (\:  \: by \: formula \:  \: 5)

 \displaystyle \sf{ =  \frac{ log(a) }{ log(c) }. log_{d}(c) } \:

 \displaystyle \sf{ =  \frac{ log(a) }{ log(c) } . \frac{ log(c) }{ log(d) } } \:  \:  \:  \:  (\:  \: by \: formula \:  \: 5)

 \displaystyle \sf{ =  \frac{ log(a) }{ log(d) } }

 \displaystyle \sf{ =  log_{d}(a) }

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Answered by himanshiagarwal261
0

Answer:

hope you like my answer . This is the solution for the question

Attachments:
Similar questions