Math, asked by vs9128601600, 1 day ago

Logrithm of a number to the base √2 is 2 what will be the logrithm of that number to the base 2√2​

Answers

Answered by jitendra12iitg
0

Answer:

The answer is \dfrac{2}{3}

Step-by-step explanation:

Let x be the number

Given  \log_{\sqrt 2}x=2

          \Rightarrow x=(\sqrt 2)^2=2

  • Since \log_ax=y\Rightarrow x=a^y

Thus \log_{2\sqrt 2}x=\log_{2^{(1+\frac{1}{2})}}(2)=\log_{2^{\frac{3}{2}}}(2)=\dfrac{1}{\frac{3}{2}}\log_22=\frac{2}{3}(1)=\frac{2}{3}

  • Since \log_{a^n}b=\frac{1}{n}\log_ab and \log_aa=1
Similar questions