Math, asked by hyzam5601, 11 months ago

Logx+y/5=1/2(logx+logy) then proved x/y+y/x=23

Answers

Answered by SparklingBoy
6

Answer:

Logarithmic identities used:-)

log(m) + log(n) = log(m.n) \\  \\ n \times  log(m) = log( {m}^{n} )

Solution:-)

Given that,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  log( \dfrac{x + y}{5} ) =  \dfrac{1}{2}    \times ( log \: x + log \: y) \\  \\  \implies log( \frac{x + y}{5} ) =  \frac{1}{2}  \times log(x.y) \\  \\  \implies log( \frac{x + y}{5} ) = log {(x.y)}^{ \frac{1}{2} }  \\  \\  \implies  \frac{x + y}{5}  = ( {x.y)}^{ \frac{1}{2} }  \\  \\  \implies  \frac{x + y}{5}  =  \sqrt{x.y}  \\  \\  \implies  \frac{x + y}{ \sqrt{x.y}  }  = 5 \\  \\  \implies \frac{x }{ \sqrt{x.y}  }  +  \frac{ y}{ \sqrt{x.y} }   = 5\\  \\  \implies  \sqrt{ \frac{x}{y}  }  +  \sqrt{ \frac{y}{x} }  = 5 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: s.b.s \\  \\   \implies \frac{x}{y}  +  \frac{y}{x}   + 2 \sqrt{ \frac{x}{y}  \times  { \frac{y}{x} } }  = 25 \\  \\  \implies  \frac{x}{y}  +  \frac{y}{x}  + 2 = 25 \\  \\  \implies  \frac{x}{y}  +  \frac{y}{x +  }  = 23

Hence the required result is proved .

Similar questions