Math, asked by rohitpant2612, 2 months ago

long answer type question

find the largest number which on dividing 1251 and 9377 and 15628 leaves remainder 1 2 and 3 respectively​

Answers

Answered by Anonymous
1

  \small \bold \red{Subtract \:  1, 2, 3 \:  from \:  1251, 9377, 15628}

 \small \bold \red{respectively.}

 \bold \red{1251 - 1 = 1250, }

 \bold \red{9377 - 2 = 9375, }

 \bold \red{15628 - 3 = 15625}

  \small\bold \red{Find  \: the  \: HCF \:  of  \: 1250 \:  and  \: 9375 }

 \red{9375 = 1250  \times  7 + 625 }

 \red{1250 = 625  \times  2 + 0 }

 \bold \red{thus \:  625 \:  is \:  the  \: HCF  }

 \small \bold \red{Now, find \:  the  \: HCF \:  of  \: 625  \: and \:  15625 }

 \red{15625 = 625  \times  25 + 0 }

So, 625 is the number that divides 1251, 9377 and 15628 leaving the remainders 1, 2 and 3 respective.

Similar questions