Math, asked by studyyyyyyy, 1 year ago

<br /> \sqrt{2}  +  \sqrt{3}  \div  \sqrt{2}  - 2 \sqrt{3}  \: <br />​

Answers

Answered by DaIncredible
1

Answer:

1.319.

Step-by-step explanation:

 \frac{ \sqrt{2}  +  \sqrt{3} }{ \sqrt{2}  - 2 \sqrt{3} }  \\

Rationalizing the denominator we get:

 =  \frac{ \sqrt{2}  +  \sqrt{3} }{ \sqrt{2}  - 2 \sqrt{3} }  \times  \frac{ \sqrt{2}  + 2 \sqrt{3} }{ \sqrt{2} + 2 \sqrt{3}  }  \\  \\  =  \frac{ \sqrt{2}( \sqrt{2}  + 2 \sqrt{3} ) +  \sqrt{3}( \sqrt{2}  + 2 \sqrt{3}  ) }{ {( \sqrt{2} )}^{2}  -  {(2 \sqrt{3} )}^{2} }  \\  \\  =  \frac{2 + 2 \sqrt{6}  +  \sqrt{6} + 6 }{2 - 12}  \\  \\  =  \frac{8 + 3 \sqrt{6} }{ - 10}  \\  \\  =  \frac{ - 8 - 3 \sqrt{6} }{10}  \:  \\  \\  \bf we \: know \: that \:  \sqrt{3}  = 1.732 \\  \\  =  \frac{ - 8 - 3(1.732)}{10}  \\  \\  =  \frac{ - 8 - 5.196}{10}  \\  \\  =  \frac{ - 13.196}{10}  \\  \\  \bf  =  - 1.319

Similar questions