Math, asked by yogeswa5506, 1 year ago

Lt x=0 (cos7X-cos9X)/(cosX-cos5X)

Answers

Answered by MaheswariS
1

\textbf{To find:}

\text{The value of}\;\displaystyle\lim_{x{\to}0}\;\dfrac{cos7x-cos5x}{cosx-cos5x}

\textbf{Solution:}

\text{Consider,}

\displaystyle\lim_{x{\to}0}\;\dfrac{cos7x-cos5x}{cosx-cos5x}

\text{Using the identity}

\boxed{\bf\,cosC-cosD=-2\,sin(\frac{C+D}{2})\,sin(\frac{C-D}{2})}

=\displaystyle\lim_{x{\to}0}\;\dfrac{-2\,sin8x\;sin(-x)}{-2\,sin3x\;sin(-2x)}

=\displaystyle\lim_{x{\to}0}\;\dfrac{sin8x\;sinx}{sin3x\;sin2x}

=\displaystyle\lim_{x{\to}0}\;\dfrac{\frac{sin8x\;sinx}{x^2}}{\frac{sin3x\;sin2x}{x^2}}

=\displaystyle\lim_{x{\to}0}\;\dfrac{(\frac{sin8x}{x})(\frac{sinx}{x})}{(\frac{sin3x}{x})(\frac{sin2x}{x})}

=\displaystyle\dfrac{\lim_{x{\to}0}\;(\frac{sin8x}{x}){\times}\lim_{x{\to}0}\;(\frac{sinx}{x})}{\lim_{x{\to}0}\;(\frac{sin3x}{x}){\times}\lim_{x{\to}0}\;(\frac{sin2x}{x})}

=\displaystyle\dfrac{8\lim_{x{\to}0}\;\frac{sin8x}{8x}{\times}\lim_{x{\to}0}\;\frac{sinx}{x}}{3\lim_{x{\to}0}\;\frac{sin3x}{3x}{\times}2\lim_{x{\to}0}\;\frac{sin2x}{2x}}

\text{Using,}\boxed{\bf\,\lim_{x{\to}0}\;\dfrac{sin\theta}{\theta}=1}

=\dfrac{8{\times}1}{3{\times}2}

=\dfrac{4}{3}

\therefore\bf\displaystyle\lim_{x{\to}0}\;\dfrac{cos7x-cos5x}{cosx-cos5x}=\dfrac{4}{3}

Find more:

Lim. 8x³-1 / 16x4-1

x--->1/2

https://brainly.in/question/6423235

If f(2)=4 and f'(2)=1, then find lim x tends to 2 xf(2)-2f(x)/x-2

https://brainly.in/question/5808208

Similar questions