Math, asked by Naim725, 1 year ago

m^2-n^2=4√mn and tanA-sinA=n sathe m=??

Answers

Answered by riteshritx1
1

Answer:

Step-by-step explanation:

m =tanA + sinA

n =tanA - sinA

m^{2}-n^{2} =(tanA + sinA)^{2} - (tanA-sinA)^{2}

m^{2}-n^{2} =4tanA.sinA

mn = (tanA+sinA)(tanA-sinA)

mn = tan^{2}A-sin^{2}A

mn = sin^{2}A(\frac{1}{cos^{2}A}-1)

mn = sin^{2}A(\frac{1-cos^{2}A}{cos^{2}A})

mn = sin^{2}A(\frac{sin^{2}A}{cos^{2}A})

mn = sin^{2}A.tan^{2}A

\sqrt{mn} = sinA.tanA

m^{2}-n^{2} =4tanA.sinA

m^{2}-n^{2} =4\sqrt{mn}

Similar questions