m^2-n^2=4√mn and tanA-sinA=n sathe m=??
Answers
Answered by
1
Answer:
Step-by-step explanation:
m =tanA + sinA
n =tanA - sinA
m^{2}-n^{2} =(tanA + sinA)^{2} - (tanA-sinA)^{2}
m^{2}-n^{2} =4tanA.sinA
mn = (tanA+sinA)(tanA-sinA)
mn = tan^{2}A-sin^{2}A
mn = sin^{2}A(\frac{1}{cos^{2}A}-1)
mn = sin^{2}A(\frac{1-cos^{2}A}{cos^{2}A})
mn = sin^{2}A(\frac{sin^{2}A}{cos^{2}A})
mn = sin^{2}A.tan^{2}A
\sqrt{mn} = sinA.tanA
m^{2}-n^{2} =4tanA.sinA
m^{2}-n^{2} =4\sqrt{mn}
Similar questions