Math, asked by vakash776p7uqb7, 1 year ago

M^3+6M^2+11m+6=0 find the factor

Answers

Answered by champ101
0
the factor is m+1 ....when u put m+1=0 and m=-1 ....it satisfies the equation...hope my answer helped
Answered by abhi569
1

Your question needs a correction :



Correct Question : m^3 + 6m^2 + 11m + 6 = 0



            Solution : -


⇒ m^3 + 6m^2 + 11m + 6 = 0


      Splitting 6m^2 in two terms

       6m^2 = 5m^2 + m^2


⇒ m^3 + m^2 + 5m^2 + 11m + 6 = 0


⇒ m^2( m + 1 ) + 5m^2 + 11m + 6 = 0


      Splitting 11m in two terms

      11m = 5m + 6m


⇒ m^2( m + 1 ) + 5m^2 + 5m + 6m + 6 = 0


⇒ m^2( m + 1 ) + 5m( m + 1 ) + 6( m + 1 ) = 0


⇒ ( m + 1 )( m^2 + 5m + 6 ) = 0


     Splitting 5m in two terms such that their product becomes 6

     5m = 2m + 3m


⇒ ( m + 1 ) { m^2 + 2m + 3m + 6 } = 0


⇒ ( m + 1 ) { m( m + 2 )  + 3( m + 2 ) } = 0


⇒ ( m + 1 ){ ( m + 2 ) ( m + 3 ) } = 0


⇒ ( m + 1 )( m + 2 )( m + 3 ) = 0


                 By Zero Product Rule : -


m = - 1

Or, m = -2

Or, m = - 3



( m + 1 ) , ( m + 2 ) and ( m + 3 ) are the factors of m^3 + 6m^2 + 11m + 6 = 0


\:

Similar questions