M is the midpoint of the side AB of a parallelogram ABCD. If ar(AMCD)=24cm^,find ar(triangleABC)
gauravbohra345:
is the answer correct?????
Answers
Answered by
123
- ar(AMCD)=ar(ACD)+ar(AMC)
- ar(ACD)=ar(ABC)=1/2 ar(ABCD)
- ar(AMC)=1/2ar(ABC)=1/4 ar(ABCD)
- given: ar(AMCD)=24cm²=1/2ar(ABCD)+1/4ar(ABCD)
∴ 24=1/2+1/4 ar(ABCD)
24=3/4 ar(ABCD)
32=ar(ABCD)
∴ar(ABC)=16cm²
Answered by
21
Answer:
ar(tri.ACD) = ar(tri.ABC)
ar( tri. AMC) =ar.(tri.MBC)=1/2ar(tri.ABC)
ar(AMCD)=3ar(tri.AMC)=24=3ar(∆AMC)
=ar(∆AMC)=8cm^2
And so,ar(∆ABC)=2ar(∆AMC)=16 cm^2
hope this will help you!!!!!!4
Similar questions