Math, asked by jamilsyed145, 2 days ago

m,n are integer and x=cos alpha + i sin alpha , y= cos beta + i sin beta then prove that x^m y^n + 1/x^m y^n = cos (m alpha +n beta) and x^m y^n - 1/x^m y^n = 2 i sin (m alpha + n beta)

Answers

Answered by varadad25
89

Answer:

\displaystyle{\sf\:i\:)\:\boxed{\red{\sf\:x^m\:y^n\:+\:\dfrac{1}{x^m\:y^n}\:=\:2\sf\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)}}}

\displaystyle{\sf\:ii\:)\:\boxed{\blue{\sf\:x^m\:y^n\:-\:\dfrac{1}{x^m\:y^n}\:=\:2\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:x\:=\:\cos\:\alpha\:+\:i\:\sin\:\alpha}

\displaystyle{\sf\:y\:=\:\cos\:\beta\:+\:i\:\sin\:\beta}

We have to prove that,

\displaystyle{\sf\:i\:)\:x^m\:y^n\:+\:\dfrac{1}{x^m\:y^n}\:=\:\textbf{\textsf2}\sf\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)}

\displaystyle{\sf\:ii\:)\:x^m\:y^n\:-\:\dfrac{1}{x^m\:y^n}\:=\:2\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)}

Now,

\displaystyle{\sf\:x\:=\:\cos\:\alpha\:+\:i\:\sin\:\alpha}

By Euler's formula,

\displaystyle{\pink{\sf\:e^{i\:x}\:=\:\cos\:x\:+\:i\:\sin\:x}}

\displaystyle{\implies\sf\:x\:=\:e^{i\:\alpha}}

\displaystyle{\implies\sf\:x^m\:=\:(\:e^{i\:\alpha}\:)^m}

\displaystyle{\implies\sf\:x^m\:=\:e^{i\:\alpha\:m}\:\qquad\cdots\:(\:1\:)}

Now,

\displaystyle{\sf\:y\:=\:\cos\:\beta\:+\:i\:\sin\:\beta}

By Euler's formula,

\displaystyle{\implies\sf\:y\:=\:e^{i\:\beta}}

\displaystyle{\implies\sf\:y^n\:=\:(\:e^{i\:\beta}\:)^n}

\displaystyle{\implies\sf\:y^n\:=\:e^{i\:\beta\:n}\:\qquad\cdots\:(\:2\:)}

Now, we have to prove that,

\displaystyle{\sf\:x^m\:y^n\:+\:\dfrac{1}{x^m\:y^n}\:=\:2\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)}

\displaystyle{\implies\sf\:LHS\:=\:x^m\:y^n\:+\:\dfrac{1}{x^m\:y^n}}

\displaystyle{\implies\sf\:LHS\:=\:x^m\:y^n\:+\:(\:x^m\:y^n\:)^{-\:1}}

\displaystyle{\implies\sf\:LHS\:=\:(\:e^{i\:\alpha\:m}\:)\:(\:e^{i\:\beta\:n}\:)\:+\:[\:(\:e^{i\:\alpha\:m}\:)\:(\:e^{i\:\beta\:n}\:)\:]^{-\:1}\:\quad\cdots[\:From\:(\:1\:)\:\&\:(\:2\:)\:]}

\displaystyle{\implies\sf\:LHS\:=\:e^{i\:\alpha\:m\:+\:i\:\beta\:n}\:+\:(\:e^{i\:\alpha\:m\:+\:i\:\beta\:n}\:)^{-\:1}}

\displaystyle{\implies\sf\:LHS\:=\:e^{i\:(\:m\:\alpha\:+\:n\:\beta\:)}\:+\:e^{i\:(\:m\:\alpha\:+\:n\:\beta\:)^{-\:1}}}

\displaystyle{\implies\sf\:LHS\:=\:e^{i\:(\:m\:\alpha\:+\:n\:\beta\:)}\:+\:e^{-\:i\:(\:m\:\alpha\:+\:n\:\beta\:)}}

\displaystyle{\implies\sf\:LHS\:=\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)\:+\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)\:+\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)\:-\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)}

\displaystyle{\implies\sf\:LHS\:=\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)\:+\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)}

\displaystyle{\implies\sf\:LHS\:=\:2\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)}

\displaystyle{\sf\:RHS\:=\:2\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)}

\therefore{\underline{\boxed{\red{\sf\:LHS\:=\:RHS\:}}}}

Hence proved!

─────────────────────

Now,

We have to prove that,

\displaystyle{\sf\:ii\:)\:x^m\:y^n\:-\:\dfrac{1}{x^m\:y^n} \:=\:2\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)}

\displaystyle{\implies\sf\:LHS\:=\:x^m\:y^n\:-\:\dfrac{1}{x^m\:y^n}}

\displaystyle{\implies\sf\:LHS\:=\:x^m\:y^n\:-\:(\:x^m\:y^n\:)^{-\:1}}

\displaystyle{\implies\sf\:LHS\:=\:(\:e^{i\:\alpha\:m}\:)\:(\:e^{i\:\beta\:n}\:)\:-\:[\:(\:e^{i\:\alpha\:m}\:)\:(\:e^{i\:\beta\:n}\:)\:]^{-\:1}\:\quad\cdots[\:From\:(\:1\:)\:\&\:(\:2\:)\:]}

\displaystyle{\implies\sf\:LHS\:=\:e^{i\:\alpha\:m\:+\:i\:\beta\:n}\:-\:(\:e^{i\:\alpha\:m\:+\:i\:\beta\:n}\:)^{-\:1}}

\displaystyle{\implies\sf\:LHS\:=\:e^{i\:(\:m\:\alpha\:+\:n\:\beta\:)}\:-\:e^{i\:(\:m\:\alpha\:+\:n\:\beta\:)^{-\:1}}}

\displaystyle{\implies\sf\:LHS\:=\:e^{i\:(\:m\:\alpha\:+\:n\:\beta\:)}\:-\:e^{-\:i\:(\:m\:\alpha\:+\:n\:\beta\:)}}

\displaystyle{\implies}\sf\:LHS\:=\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)\:+\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)\:-\:[\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)\:-\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)\:]

\displaystyle{\implies\sf\:LHS\:=\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)\:+\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)\:-\:\cos\:(\:m\:\alpha\:+\:n\:\beta\:)\:+\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)}

\displaystyle{\implies\sf\:LHS\:=\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)\:+\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)}

\displaystyle{\implies\sf\:LHS\:=\:2\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)}

\displaystyle{\sf\:RHS\:=\:2\:i\:\sin\:(\:m\:\alpha\:+\:n\:\beta\:)}

\therefore{\underline{\boxed{\red{\sf\:LHS\:=\:RHS\:}}}}

Hence proved!

Answered by geniusranksinghmohan
43

Step-by-step explanation:

given :

  • m,n are integer and x=cos alpha + i sin alpha , y= cos beta + i sin beta then prove that x^m y^n + 1/x^m y^n = cos (m alpha +n beta) and x^m y^n - 1/x^m y^n = 2 i sin (m alpha + n beta)

to find :

  • m y^n = cos (m alpha +n beta) and x^m y^n - 1/x^m y^n = 2 i sin (m alpha + n beta)

solution :

  • check the attached file there is your answer
Attachments:
Similar questions