Physics, asked by Sweta9160, 10 months ago

Madhulika drive scooter acquires a velocity of 36 kilometre per hour in 10 seconds just after the start. she takes 20 seconds to stop. calculate the acceleration in two cases

Answers

Answered by Rohit18Bhadauria
16

Given:

Case-1: When scooter starts

Initial velocity of scooter,u= 0 km/h

(Since, scooter starts from rest)

Final velocity of scooter,v= 36 km/h

Time taken by scooter,t= 10 s

Case-2: When scooter stops

Initial velocity of scooter,u'= 36 km/h

Final velocity of scooter,v'= 0 km/h

(Since, scooter stops finally)

Time taken by scooter,t'= 20 s

To Find:

Acceleration in both the cases

Solution:

We know that,

  • According to first equation of motion for constant acceleration,

\purple{\boxed{\bf{v=u+at}}}

where,

v is final velocity

u is initial velocity

a is acceleration

t is time taken

\rule{190}{1}

It is given that,

\rm{u=v'=0\ km/h=0\times\dfrac{5}{18}\ m/s=0\ m/s}

\rightarrow\rm{v=u'=36\ km/h=36\times\dfrac{5}{18}\ m/s=10\ m/s}

\rule{190}{1}

Case-1

Let the acceleration of scooter be a

So, on applying first equation of motion on scooter, we get

\longrightarrow\rm{v=u+at}

\longrightarrow\rm{10=0+a(10)}

\longrightarrow\rm{10=10a}

\longrightarrow\rm{10a=10}

\longrightarrow\rm{a=\dfrac{10}{10}}

\longrightarrow\rm\green{a=1\ m/s^{2}}

\rule{190}{1}

Case-2

Let the acceleration of scooter be a'

So, on applying first equation of motion on scooter, we get

\longrightarrow\rm{v'=u'+a't'}

\longrightarrow\rm{0=10+a'(20)}

\longrightarrow\rm{-10=20a'}

\longrightarrow\rm{20a'=-10}

\longrightarrow\rm{a'=\dfrac{-10}{20}}

\longrightarrow\rm\green{a'=-0.5\ m/s^{2}}

Answered by Anonymous
14

Question:

Madhulika\:drive\:scooter\:acquires\:a\:velocity\\ of\:36\:kilometre\:per\:hour\:in\:10\:seconds\:just\:after\\ the\:start.\:she takes\:20\:seconds\:to\:stop. </p><p>\\calculate\:the\:acceleration\:in\:two\: cases.

Given:

Let\:the\:case\:one\:be\:C_{1}\\ And\:case\:two\:be\:C_{2}

Case 1:

Initial\:velocity = 0 km\:hr^{-1} = 0 m\:s{-1}

Final\:velocity = 36 km\:hr^{-1} = 10 m\:s{-1}

Time\:Taken = 10 sec =

Case 2:

Initial\:velocity = 36 km\:hr^{-1} = 10 m\:s{-1}

Final\:velocity = 0 km\:hr^{-1} = 10 m\:s{-1}

Time\:Taken = 20 sec

We Know:

\blue{\boxed{v = u + at}}

In the equation;

  • u = Initial velocity
  • v = final velocity
  • a = accelaration
  • t = Time taken

Reference:

❥In the First case the acceleration will be taken as positive.

❥In the second case the acceleration will be negative.

Solution:

For first case :

{\boxed{v = u + at}}

\blue{\boxed{10 m\:s^{-1} = 0 m\:s^{-1} +  a × 10 sec}}

\blue{\boxed{10 =  10a}}

\blue{\boxed{a =  \dfrac{10}{10} m\:s^{-2}}}

Hence,\:the\:acceleration\:is 1 m\:s^{-2}

______________________________________

For second case :

{\boxed{v = u + at}}

\blue{\boxed{0 m\:s^{-1} = 36 m\:s^{-1} +  a × 20 sec}}

\blue{\boxed{0 = 10 + 20a}}

\blue{\boxed{-10= 20a}}

\blue{\boxed{a =  \dfrac{-10}{20} m\:s^{-2}}}

Hence,\:the\:acceleration\:is\:-0.5 m\:s^{-2}

______________________________________

Similar questions