Math, asked by AditiRath4742, 1 year ago

Math ke siddhanto ki art me upayogita

Answers

Answered by ABCD2056
2

Answer:



संगीत में स्वरग्राम तथा संनादी (हार्मोनी) और प्रतिबिंदु (काउंटरपाइंट) के सिद्धांत गणित पर ही आश्रित होते हैं। गणित का विज्ञान में इतना महत्व है तथा विज्ञान की इतनी शाखाओं में इसकी उपयोगिता है कि गणितज्ञ एरिक टेम्पल बेल ने इसे ...‎गणित का महत्व · ‎गणित कार्यपद्धति · ‎गणित का



ब्रह्मगुप्त



ब्रह्मगुप्त का प्रमेय, इसके अनुसार AF = FD.


पुरातन काल से ही सभी प्रकार के ज्ञान-विज्ञान में गणित का स्थान सर्वोपरि रहा है-



यथा शिखा मयूराणां नागानां मणयो यथा।


तथा वेदांगशास्त्राणां गणितं मूर्ध्नि स्थितम्॥ (वेदांग ज्योतिष)  

( जिस प्रकार मोरों में शिखा और नागों में मणि का स्थान सबसे उपर है, उसी प्रकार सभी वेदांग और शास्त्रों मे गणित का स्थान सबसे ऊपर है।)



महान गणितज्ञ गाउस ने कहा था कि गणित सभी विज्ञानों की रानी है। गणित, विज्ञान और प्रौद्योगिकी का एक महत्वपूर्ण उपकरण (टूल) है। भौतिकी, रसायन विज्ञान, खगोल विज्ञान आदि गणित के बिना नहीं समझे जा सकते। ऐतिहासिक रूप से देखा जाय तो वास्तव में गणित की अनेक शाखाओं का विकास ही इसलिये किया गया कि प्राकृतिक विज्ञान में इसकी आवश्यकता आ पड़ी थी।



कुछ हद तक हम सब के सब गणितज्ञ हैं। अपने दैनिक जीवन में रोजाना ही हम गणित का इस्तेमाल करते हैं - उस वक्त जब समय जानने के लिए हम घड़ी देखते हैं, अपने खरीदे गए सामान या खरीदारी के बाद बचने वाली रेजगारी का हिसाब जोड़ते हैं या फिर फुटबाल टेनिस या क्रिकेट खेलते समय बनने वाले स्कोर का लेखा-जोखा रखते हैं।



व्यवसाय और उद्योगों से जुड़ी लेखा संबंधी संक्रियाएं गणित पर ही आधारित हैं। बीमा (इंश्योरेंस) संबंधी गणनाएं तो अधिकांशतया ब्याज की चक्रवृद्धि दर पर ही निर्भर है। जलयान या विमान का चालक मार्ग के दिशा-निर्धारण के लिए ज्यामिति का प्रयोग करता है। भौगोलिक सर्वेक्षण का तो अधिकांश कार्य ही त्रिकोणमिति पर आधारित होता है। यहां तक कि किसी चित्रकार के आरेखण कार्य में भी गणित मददगार होता है, जैसे कि संदर्भ (पर्सपेक्टिव) में जिसमें कि चित्रकार को त्रिविमीय दुनिया में जिस तरह से इंसान और वस्तुएं असल में दिखाई पड़ते हैं, उन्हीं का तदनुरूप चित्रण वह समतल धरातल पर करता है।



संगीत में स्वरग्राम तथा संनादी (हार्मोनी) और प्रतिबिंदु (काउंटरपाइंट) के सिद्धांत गणित पर ही आश्रित होते हैं। गणित का विज्ञान में इतना महत्व है तथा विज्ञान की इतनी शाखाओं में इसकी उपयोगिता है कि गणितज्ञ एरिक टेम्पल बेल ने इसे ‘विज्ञान की साम्राज्ञी और सेविका’ की संज्ञा दी है। किसी भौतिकविज्ञानी के लिए अनुमापन तथा गणित का विभिन्न तरीकों का बड़ा महत्व होता है। रसायनविज्ञानी किसी वस्तु की अम्लीयता को सूचित करने वाले पी एच (pH) मान के आकलन के लिए लघुगणक का इस्तेमाल करते हैं। कोणों और क्षेत्रफलों के अनुमापन द्वारा ही खगोलविज्ञानी सूर्य, तारों, चंद्र और ग्रहों आदि की गति की गणना करते हैं। प्राणी-विज्ञान में कुछ जीव-जन्तुओं के वृद्धि-पैटर्नों के विश्लेषण के लिए विमीय विश्लेषण की मदद ली जाती है।



उच्च गतिवाले संगणकों द्वारा गणनाओं को दूसरी विधियों द्वारा की गई गणनाओं की अपेक्षा एक अंश मात्र समय के अंदर ही सम्पन्न किया जा सकता है। इस तरह कम्यूटरों के आविष्कार ने उन सभी प्रकार की गणनाओं में क्रांति ला दी है जहां गणित उपयोगी हो सकता है। जैसे-जैसे खगोलीय तथा काल मापन संबंधी गणनाओं की प्रामाणिकता में वृद्धि होती गई, वैसे-वैसे नौसंचालन भी आसान होता गया तथा क्रिस्टोफर कोलम्बस और उसके परवर्ती काल से मानव सुदूरगामी नए प्रदेशों की खोज में घर से निकल पड़ा। साथ ही, आगे के मार्ग का नक्शा भी वह बनाता गया। गणित का उपयोग बेहतर किस्म के समुद्री जहाज, रेल के इंजन, मोटर कारों से लेकर हवाई जहाजों के निर्माण तक में हुआ है। राडार प्रणालियों की अभिकल्पना तथा चांद और ग्रहों आदि तक राकेट यान भेजने में भी गणित से काम लिया गया है।

Similar questions