mathemathical identities
Answers
Answered by
4
(a+b)²=a²+b²+2ab
(a-b)²=a²+b²-2ab
(a+b)³=a³+b³+3ab(a+b)
(a-b)³=a³-b³-3ab(a-b)
(x+a)(x+b)=x²+(a+b)x+ab
(a+b+c)²=a²+b²+c²+2ab+2bc+2ca
(a+b)(a-b)=a²-b²
a³+b³=(a+b)(a²-ab+b²)
a³-b³=(a-b)(a²+ab+b²)
(a-b)²=a²+b²-2ab
(a+b)³=a³+b³+3ab(a+b)
(a-b)³=a³-b³-3ab(a-b)
(x+a)(x+b)=x²+(a+b)x+ab
(a+b+c)²=a²+b²+c²+2ab+2bc+2ca
(a+b)(a-b)=a²-b²
a³+b³=(a+b)(a²-ab+b²)
a³-b³=(a-b)(a²+ab+b²)
EXAMPLE234:
Thnx alot
Answered by
4
(a+b)²=a²+b²+2ab
(a-b)²=a²+b²-2ab
(a+b)³=a³+b³+3ab(a+b)
(a-b)³=a³-b³-3ab(a-b)
(x+a)(x+b)=x²+(a+b)x+ab
(a+b+c)²=a²+b²+c²+2ab+2bc+2ca
(a+b)(a-b)=a²-b²
a³+b³=(a+b)(a²-ab+b²)
a³-b³=(a-b)(a²+ab+b²)
(x+y)^2 = x^2+y^2+2xy
(x-y)^2 = x^2+y^2-2xy
x^2-y^2 = (x+y)(x-y)
(x+a)(x+b) = x^2+(a+b)x+ab
(a-b)²=a²+b²-2ab
(a+b)³=a³+b³+3ab(a+b)
(a-b)³=a³-b³-3ab(a-b)
(x+a)(x+b)=x²+(a+b)x+ab
(a+b+c)²=a²+b²+c²+2ab+2bc+2ca
(a+b)(a-b)=a²-b²
a³+b³=(a+b)(a²-ab+b²)
a³-b³=(a-b)(a²+ab+b²)
(x+y)^2 = x^2+y^2+2xy
(x-y)^2 = x^2+y^2-2xy
x^2-y^2 = (x+y)(x-y)
(x+a)(x+b) = x^2+(a+b)x+ab
Similar questions