Math, asked by godaki, 7 months ago

mathematics induction
can anyone solve this questions​

Attachments:

Answers

Answered by BrainlyPopularman
12

GIVEN :

  \\ \implies\bf 5 + 15 + 45 + ......... + 5 {(3)}^{n - 1} =  \dfrac{5}{2}({3}^{n}  - 1) \\

TO PROVE :

• Prove this by Using mathematics induction.

SOLUTION :

Step (1) :

Put n = 1 –

  \\ \implies\bf 5 {(3)}^{1 - 1} =  \dfrac{5}{2}({3}^{1}  - 1) \\

  \\ \implies\bf 5 {(3)}^{0} =  \dfrac{5}{2}({3}  - 1) \\

  \\ \implies\bf 5= \dfrac{5}{ \cancel2}( \cancel2) \\

  \\ \implies\bf 5=5\\

Hence , It's true for n = 1 .

Step (2) :

• Now Let's assume that it's true for n = k :–

  \\ \implies\bf 5 + 15 + 45 + ......... + 5 {(3)}^{k-1} =  \dfrac{5}{2}({3}^{k}  - 1)  \:  \:  \:  \:  \:  -  -  -  - eq.(1)\\

Step (3) :

Now we should have to prove for n = k+1 :–

  \\ \implies\bf 5 + 15 + 45 + ......... + 5 {(3)}^{k} =  \dfrac{5}{2}({3}^{k + 1}  - 1)\\

• Now let's take L.H.S. –

  \\ \bf \:\: =  \:\:{ \underbrace{\bf 5 + 15 + 45 + ......... + 5 {(3)}^{k - 1}}} + 5 {(3)}^{k}\\

• Using eq.(1) –

  \\ \:  \: =  \:\: \bf \dfrac{5}{2}({3}^{k}  - 1) + 5 {(3)}^{k}\\

  \\ \:  \: =  \:\: \bf \dfrac{5.{3}^{k} }{2} -  \dfrac{5}{2} + 5 {(3)}^{k}\\

  \\ \:  \: =  \:\: \bf  {3}^{k} \bigg(\dfrac{5}{2} + 5\bigg)-  \dfrac{5}{2}\\

  \\ \:  \: =  \:\: \bf  {3}^{k} \bigg(\dfrac{5 + 10}{2} \bigg)-  \dfrac{5}{2}\\

  \\ \:  \: =  \:\: \bf  {3}^{k} \bigg(\dfrac{15}{2} \bigg)-  \dfrac{5}{2}\\

  \\ \:  \: =  \:\: \bf  {3}^{k} \bigg(\dfrac{5.3}{2} \bigg)-  \dfrac{5}{2}\\

  \\ \:  \: =  \:\: \bf  {3}^{k + 1} \bigg(\dfrac{5}{2} \bigg)-  \dfrac{5}{2}\\

  \\ \:  \: =  \:\: \bf \dfrac{5}{2}({3}^{k + 1}-1) \\

  \\ \:  \: =  \:\: \bf R.H.S. \\

  \\ \implies \large{ \boxed{ \boxed{\bf Hence \:  \: proved}}}\\

Similar questions