Math, asked by deepakchirru, 11 months ago

Mathon
Question 17 ♡
Instructions:Select the ONE correct answer from the given options.
The sum of the complex roots of the equations (x - 1)' + 64 = 0 is
(1) 31
(2) 3
(3) 6i
(4) 6
0
0
0
0​

Answers

Answered by MaheswariS
0

\textbf{Given:}

(x-1)^3+64=0

\textbf{To find:}

\text{Sum of the roots of the equation}

\text{First we find the roots of the equation by using demovire's theorem}

(x-1)^3+64=0

(x-1)^3=-64

(x-1)^3=64(-1)

(x-1)^3=64[cos\,\pi+i\,sin\,\pi]

x-1=(64)^{\frac{1}{3}}[cos(\pi+2k\pi)+i\,sin(\pi+2k\pi)]^{\frac{1}{3}}

x-1=(4^3)^{\frac{1}{3}}[cos\,\frac{\pi+2k\pi}{3}+i\,sin\,\frac{\pi+2k\pi}{3}] \;\text{where k=0,1,2}

x-1=4[cos\,\frac{\pi+2k\pi}{3}+i\,sin\,\frac{\pi+2k\pi}{3}] \;\text{where k=0,1,2}

\text{For k=0, $x-1=4[cos\frac{\pi}{3}+i\,sin\frac{\pi}{3}]$}

\implies\,x-1=4[\frac{1}{2}+i\,\frac{\sqrt3}{2}]

\implies\,x-1=2+i\,2\sqrt{3}

\implies\boxed{\bf\,x=3+i\,2\sqrt{3}}

\text{For k=1, $x-1=4[cos\,\pi+i\,sin\,\pi]$}

\implies\,x-1=4[-1+i(0)]

\implies\,x-1=-4

\implies\boxed{\bf\,x=-3}

\text{For k=2, $x-1=4[cos\frac{5\pi}{3}+i\,sin\frac{5\pi}{3}]$}

\implies\,x-1=4[\frac{1}{2}-i\,\frac{\sqrt3}{2}]

\implies\,x-1=2-i\,2\sqrt{3}

\implies\boxed{\bf\,x=3-i\,2\sqrt{3}}

\textbf{The roots of the equation are}

\bf\,3+i\,2\sqrt{3},-3\;\text{and}\;3-i\,2\sqrt{3}

\therefore\textbf{The sum of the roots is 3}

\implies\textbf{option (2) is correct}

Find more:

2(x^2+1/x^2 )-9(x+1/x)+14=0 solve

https://brainly.in/question/1606763

Similar questions