Math, asked by manjuannamdevara, 9 months ago

- MATHS - 2
Tho simpied value of (****+,c** Y **** ----)
a) x2"
- 12"
b) x?"
d
+
C).x2
2121​

Attachments:

Answers

Answered by Anonymous
35

Given expression :

 \sf \bigg( {x}^{ {2}^{n - 1} }  +  {y}^{ {2}^{n - 1} } \bigg)\bigg( {x}^{ {2}^{n - 1} }   -   {y}^{ {2}^{n - 1} } \bigg)

Using algebraic identity ( a + b )( a - b ) = a² - b² we get,

 \Rightarrow \sf \bigg( {x}^{ {2}^{n - 1} }   \bigg)^{2}    -    \bigg({y}^{ {2}^{n - 1} } \bigg)^{2}

We know that : Law of exponents i. e ( a^m )^n = a^( mn ), So the expression becomes

 \Rightarrow \sf  x ^{2^{n - 1}  \times 2}    -    y ^{ {2}^{n - 1} \times 2 }

Using law of exponent a^m × a^n = a^( m + n) we get,

 \Rightarrow \sf  x^{2^{n - 1 + 1} }    -    y^{ {2}^{n - 1 + 1}  }

 \Rightarrow \sf  x^{2^{n } }    -    y^{ {2}^{n }  }

Hence the value of the given expression is Option (a) x^( 2^n ) - y^( 2^n ).

Additional information :

Algebraic identity : An equation in wich every variable satisfies is said to be an algebraic identity.

E. g

  • ( a + b )² = a² + b² + 2ab
  • ( a - b )² = a² + b² - 2ab
  • ( a + b )( a - b ) = a² - b²
  • ( x + a )( x + b) = x² + ( a + b)x + ab
  • ( a + b )² - ( a - b )² = 4ab
  • ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

RvChaudharY50: Perfect. ❤️
Anonymous: Thanks bro :)
Answered by Anonymous
22

Your answer refer to the attachment

Attachments:
Similar questions