Math, asked by BRAINLYxKIKI, 1 month ago

★ Maths Problem !!

1: Find the sum upto \sf{n^{th}} term of the following series :

\boxed{\sf{\orange{ 4\: + \: 44 \: + \:444 \: + \:. . . . . . . . . .\:+\: n^{th} term }}}

 \boxed{\sf{\orange{ 1 \:+\: \dfrac{1}{2} \:+\: \dfrac{1}{2²} \:+\: \dfrac{1}{2³} \:+\: . . . . . . . . . . \:+\: n^{th} term }}}

‡‡ Do not spam !
‡‡ Quality answer needed !​

Answers

Answered by ItzBrainlyResponder
39

 \frak{ \maltese \:  \: Given :: -  } \begin{cases}{ \bullet \:  \:{\sf{ \underline{ 4\: + \: 44 \: + \:444 \: + \:. . . . . . . . . .\:+\: upto \: n^{th} term }.}}} \\   \\  \bullet \:  \: { \underline{\sf{{ 1 \:+\: \dfrac{1}{2} \:+\: \dfrac{1}{2^2} \:+\: \dfrac{1}{2^3} \:+\: . . . . . . . . . . \:+\: upto \: n^{th} term }.}}} \end{cases}

 \\

 Need To Find : We have to find the sum upto n^{th}\;term.

 \\

 \frak{\maltese\:  \:Here  :  :  - } \begin{cases}{ \bullet \:  \:  \underline{{\textbf{\textsf{S}}} \bf_n \:   : \mapsto \:  \sf{sum \:of \: { \textbf{ \textsf{ n \: terms. }}}}}} \\{ \bullet \:  \:  \underline{{\textbf{\textsf{S}}} \bf_{\infty} \:   : \mapsto \:  \sf{sum \:of \:\infty_{n} { \textbf{ \textsf{\: terms. }}}}}}\\{ \bullet \:  \:  \underline{{\textbf{\textsf{a}}}  \:   : \mapsto \: { \textbf{ \textsf{ first \: term. }}}}}  \\{ \bullet \:  \:  \underline{{\textbf{\textsf{r}}}  \:   : \mapsto \: { \textbf{ \textsf{ common \: ratio. }}}}} \\ { \bullet \:  \:  \underline{{\textbf{\textsf{G.P.}}}  \:   : \mapsto \: { \textbf{ \textsf{geometric \: progression. }}}}}. \end{cases}

{\maltese\:  \: \large{ \underline{\underline{ \textsf{ \textbf{Required  \: Solution \: (1)}}}}} \:  :  :  -} \\  \\

 \frak{ \maltese \:  \: Formula  \: Used :  :  - } \begin{cases}\bullet{ \textbf{ \textsf{{\:  \: Sum \:  of \:  n \:  terms  \: of \:  G.P}}}_{ \sf(geometric \: progression)}}.  \\\  \bigstar \:  \:  \underline{\boxed{\bigg \lbrack{ \sf{S_{n}(sum \: of \: n \: terms) \:  =  \:  {\frac{a_{(first \: term)}(r{}^{n}_{(common \: ratio)}  - 1) }{(r_{(common \: ratio)} - 1)} \bigg \rbrack ,r_{(common \: ratio)} \neq \: 1}}}}} \:  \:  \bigstar \end{cases}\\

 \bigstar \:  \: { \tt{{ 4\: + \: 44 \: + \:444 \: + \:. . . . . . . . . .\:+ \: n^{th}  \: term }}}

 \\

Here, we have to convert the given terms into series to get the result by applying the formula :

 \\

{ :\longmapsto \tt \:\:S_{n} \:  =  \: \frac{4}{1}  \: or \: 4 \: (1 + 11 + 111 +  \cdots\cdots \:   + \: n  \:  term) } \\  \\

 {:\longmapsto \tt \:\:S_{n} \:  =  \: \frac{4}{9} \: (9 + 99 + 999 +  \cdots\cdots \: +  \:  n \: term)} \\  \\

{ :\longmapsto \tt \:\:S_{n} \:  =  \: \frac{4}{9} \:  \lbrack(10 - 1) +(10 {}^{2}  - 1) + (10 {}^{3}  - 1) +  \cdots\cdots \:  +  \: n \: term) \rbrack} \\

 \\

Then, seperating the terms :

 \\

{ :\longmapsto \tt \:\:S_{n} \:  =  \: \frac{4}{9} \:  \lbrack(10  +10 {}^{2}  + 10 {}^{3}   +  \cdots\cdots \:  +  \: 10 {}^{n} ) - (1 + 1 + 1 + \cdots\cdots \:  + \: n \: terms ) \rbrack} \\

➦ Here, in the terms we can see that {\bf{a_{(first \:term)\;}}}= 10 and {\bf{r_{(common \:ratio)\;}}}= 10.

 \\

Substituting the values according to the formula and given info. :

 \\

{\tt{ :  \longmapsto \:  \: S_n \:  =  \:  \frac{4}{9} \cdot10  \bigg \lbrack \frac{(10 {}^{n}  - 1)}{(10 - 1)} \bigg \rbrack -n (1)}}

 \\

\underline{\boxed{\sf{ : \implies \:  \: S_n \:  =  \:  \frac{4}{9}   \bigg \lbrack \frac{10}{9}(10^n - 1)-n \bigg \rbrack -n (1)}}} \:  \:  \bigstar

 \\  \\

.°. Hence, the sum of 4 + 44 + 444  \cdots\cdots upto n terms is \\ \bf{: \implies \:  \: S_n \:  =  \:  \frac{4}{9}   \bigg \lbrack \frac{10}{9}(10^n - 1)-n \bigg \rbrack - n}

{\maltese\:  \: \large{ \underline{\underline{ \textsf{ \textbf{Required  \: Solution \: (2)}}}}} \:  :  :  -} \\  \\

 \frak{ \maltese \:  \: Formula  \: Used :  :  - } \begin{cases}\bullet{ \textbf{ \textsf{{\:  \: Sum \:  of \:  n \:  terms  \: of \:  G.P}}}_{ \sf(geometric \: progression)}}.  \\\  \bigstar \:  \:  \underline{\boxed{\bigg \lbrack{ \sf{S_{\infty}(sum \: of \: \infty_{(n)} \: terms) \:  =  \:  {\frac{a_{(first \: term)}}{(1 - r_{(common \: ratio))}} \bigg \rbrack ,|r|_{(common \: ratio)} \:< 1}}}}} \:  \:\bigstar \end{cases}\\

\bigstar\;\:{\sf{{ 1 \:+\: \dfrac{1}{2} \:+\: \dfrac{1}{2^2} \:+\: \dfrac{1}{2^3} \:+\: . . . . . . . . . . \:+\: n^{th} term }.}}

\\

Substituting the values according to the formula and given info. :

:\longmapsto{ \tt{S_{\infty}\:=\:\dfrac{1}{1-\frac{1}{2}}}}

\\

:\longmapsto{ \tt{S_{\infty}\:=\:\dfrac{1}{\frac{1}{2}}}}

\\

:\longmapsto{ \tt{S_{\infty}\:=\:1\times\dfrac{2}{1}}}

\\

{\underline{\boxed{\sf{:\implies S_{\infty}\:=\:2}}}}\;\:\bigstar

\\\\

.°. Hence, the sum of {\sf{{ 1 \:+\: \dfrac{1}{2} \:+\: \dfrac{1}{2^2} \:+\: \dfrac{1}{2^3} \:+\: . . . . . . . . . . \:+\: n^{th} term }.}} is \\ {\bf{:\implies S_{\infty}\:=\:2}}

\\\\

Answered by arunpatodi18
1

Answer:

2 is the answer

Step-by-step explanation:

pls mark brainliest

Similar questions