Math, asked by Anonymous, 1 year ago

Maths Question :) (Class 10)

If α and β are the zeros of the polynomial f(x)=ax²+bx+c,then evaluate

(i)(β/aα+b)+(α/aβ+b)
(ii)a(α²/β+β²/α)+b(α/β+β/α)


Anonymous: I don't want any complicated answer :)
Anonymous: is it from textbook
Anonymous: naahh..! xD
Anonymous: from where
Anonymous: You can not copy and answer @Ankitakumari
Anonymous: It is from refresher ..! But sorry I will not tell any name
Anonymous: Mai answer du
Anonymous: I know it

Answers

Answered by kvnmurty
4
f(x) = a x² + b x + c
     ⇒  α+b = -b/a      αβ = c/a
     ⇒ α²+β² = b²/a² - 2c/a = (b² - 2ac) / a²
     ⇒ α³ + β³ = (α+β)³ - 3αβ(α+β) = - b³/a³ + 3cb / a² = b(3ac-b²)/a³

1)
 \frac{\beta}{a\alpha+b}+\frac{\alpha}{a\beta+b}\\\\=\frac{a(\alpha^2+\beta^2)+b(\alpha+\beta)}{a^2\alpha\beta+ab(\alpha+\beta)+b^2}\\\\=\frac{b^2/a-2c-b^2/a}{ac-b^2+b^2}\\\\=-\frac{2}{a}
 
2)
a(\frac{\alpha^2}{\beta}+\frac{\beta^2}{\alpha})+b(\frac{\alpha}{\beta}+\frac{\beta}{\alpha})\\\\=\frac{1}{\alpha\beta}[a(\alpha^3+\beta^3)+b(\alpha^2+\beta^2)]\\\\=\frac{a}{c} \frac{1}{a^2} [ 3abc-b^3+ b^3-2abc ]\\\\=a^2bc/a^2c\\\\=b
 

Anonymous: Sir,There is a blank space in second answer :(
kvnmurty: done
Anonymous: Awky ^_^
kvnmurty: click on thanks ...
Anonymous: Wait
kvnmurty: please click on thanks (Red link Heart symbol) above right below the answer..
kvnmurty: please select brainliest answer
Similar questions