Math, asked by maaltikumari, 10 months ago

Maths question from arithmetic progression chapter.​

Attachments:

Answers

Answered by BrainlyTornado
11

QUESTION:

\sf If \ \dfrac{1}{a+b}, \ \dfrac{1}{b+c},\ \dfrac{1}{c+a}\ are \ in \ A.P  \ then :

ANSWER:

 \sf{Option\ d)\ b^2,  \ a^2, \ c^2 \ are\ in\ A.P}

GIVEN:

\sf \dfrac{1}{a+b}, \ \dfrac{1}{b+c},\ \dfrac{1}{c+a}\ are \ in \ A.P

TO FIND:

  • The correct option.

EXPLANATION:

  \tt {Common  \ difference \ (d)= t_2-t_1=t_3-t_1}

\tt\dfrac{1}{b+c} - \dfrac{1}{a+b} =  \dfrac{1}{c+a} - \dfrac{1}{b+c}

 \tt{Let \ L.H.S = \dfrac{1}{b+c} - \dfrac{1}{a+b}}

 \tt Let \ R.H.S = \dfrac{1}{c+a} - \dfrac{1}{b+c}

L.H.S

Multiply by (a + b)(c + a) on both numerator and denominator for 1 / (b + c). Similarly, Multiply by (b + c)(c + a) on both numerator and denominator for 1 / (a + b).

 \tt{\dfrac{1(a + b)( c + a )}{(b+c)( a+b )( c+a )} - \dfrac{1(b + c)(c + a)}{a+b(c +a ) (b+c )}}

 \tt{\dfrac{(ac +  {a}^{2}  + bc + ab) - (bc + ab +  {c}^{2}  + ac)}{(b+c)( a+b )( c+a )}}

 \tt{\dfrac{{a}^{2 }-   {c}^{2}}{(b+c)( a+b )( c+a )}}

R.H.S

Multiply by (a + b)(c + a) on both numerator and denominator for 1 / (b + c). Similarly, Multiply by (a + b)(b + c) on both numerator and denominator for 1 / (c + a).

 \tt{\dfrac{1(a + b)(b + c)}{c + a(a +b ) (b+c )} - \dfrac{1(a + b)( c+a )}{(b+c)( a+b )( c+a )} }

 \tt{\dfrac{(ab + ac +  {b}^{2}+ bc) - (ac +  {a}^{2}  + bc + ab)}{c + a(a +b ) (b+c ) }}

 \tt{\dfrac{ab + ac +  {b}^{2}+ bc - ac  -   {a}^{2}   - bc - ab}{c + a(a +b ) (b+c ) }}

 \tt{\dfrac{{b}^{2} -   {a}^{2} }{c + a(a +b ) (b+c ) }}

EQUATE L.H.S AND R.H.S

 \tt{\dfrac{{a}^{2 }-   {c}^{2}}{(b+c)( a+b )( c+a )}} = \tt{\dfrac{{b}^{2} -   {a}^{2} }{c + a(a +b ) (b+c ) }}

 \tt{{a}^{2 }-   {c}^{2} = {b}^{2} -   {a}^{2} }

 \tt{2{a}^{2 }= {b}^{2}  + {c}^{2}}

 \tt{{a}^{2 }-   {c}^{2} = {b}^{2} -   {a}^{2} }

 \tt{This\ is\ in \ the\ form\  t_2 - t_1=t_3-t_2}

 \boldsymbol{t_2=a^2, \ \ t_1=c^2, \ \ t_3= b^2}

 \underline{\boxed{\bold{Hence\ b^2,  \ a^2, \ c^2 \ are\ in\ A.P}}}

VERIFICATION:

\sf{When \ t_1=b^2, \ \ t_2=a^2, \ \ t_3= c^2 }

  \sf{d= t_2-t_1=t_3-t_1}

\sf{a^2 - b^2 =c^2 -  a^2 }

 \sf{2{a}^{2 }= {b}^{2}  + {c}^{2}}

HENCE VERIFIED.

Similar questions