Math, asked by Nita6717, 1 year ago

Maths the dimensons of a cuboid are in the ratio 3:4:5 and its total surface area is 3384 cm2. Find the diamensions of the cuboid

Answers

Answered by nain31
4

 \bold{Given}

  \mathsf{Surface \: area \: of \: cubiod=  3384 \: cm^{2}}

 \textsf{The \: dimensions \: of  \: an \: cubiod  \: are \:  in \:  ratio \: 3 : 4 : 5}

 \textsf{Let \: the \: common \: ratio \: be  \: x}

 \textsf{So, \: sides \: becomes}

 \mathsf{Length  \: l= 3x}

 \mathsf{Breadth \: b = 4x}

 \mathsf{Height  \: h= 5x}

 \textsf{We \: know, }

  \large \boxed{\mathsf{Surface \: area  =  2(lb + bh + hl)}}

 \textsf{On \: placing \: values}

  \mathsf{Surface \: area  =  2(3x \times 4x + 4x \times 5x + 5x \times 3x )}

  \mathsf{Surface \: area  = 2( 12x + 20x  + 15x)}

  \mathsf{Surface \: area  = 2(47x)}

  \mathsf{Surface \: area  = 94x}

 \textsf{Since, }

  \mathsf{Surface \: area \: of \: cubiod=  3384 \: cm^{2}}

 \textsf{So, }

  \mathsf{3384 = 94x}

  \mathsf{\dfrac{3384}{94} = x}

  \large \boxed{\mathsf{x = 36}}

 \textsf{Dimensions \: of \: cubiod \f will \: be, }

 \mathsf{Length  \: l= 3 \times 36 = 108 cm}

 \mathsf{Breadth \: b = 4 \times 36 = 144 cm}

 \mathsf{Height  \: h= 5 \times 36 = 180 cm}

Similar questions