Math, asked by bhuvangajbhiye11, 10 months ago

Matrix inversion method ​

Attachments:

Answers

Answered by MaheswariS
5

Answer:

The solution is

x=-1

y=1

z=2

Step-by-step explanation:

The given system of equations can be written as

\left(\begin{array}{ccc}1&3&2\\3 &-2&5\\2&-3&6\end{array}\right)\left(\begin{array}{c}x\\y\\z\end{array}\right)=\left(\begin{array}{c}6\\5\\7\end{array}\right)

This is of the form AX=B

|A|=\left|\begin{array}{ccc}1&3&2\\3 &-2&5\\2&-3&6\end{array}\right|

Expanding along first row

|A|=1(-12+15)-3(18-10)+2(-9+4)

\implies\,|A|=1(3)-3(8)+2(-5)

\implies\,|A|=3-24-10

\implies\,|A|=-31\neq\,0

\therefore\,\bf\,A^{-1}\:exists

Cofactor matrix of A

[a_{ij}]=\left(\begin{array}{ccc}3&-8&-5\\-24&2&9\\19&1&-11\end{array}\right)

adj(A)=[a_{ij}]^T

\implies\,adj(A)=\left(\begin{array}{ccc}3&-24&19\\-8&2&1\\-5&9&-11\end{array}\right)

A^{-1}=\frac{1}{|A|}(adjA)

\implies\bf\,A^{-1}=\frac{-1}{31}\left(\begin{array}{ccc}3&-24&19\\-8&2&1\\-5&9&-11\end{array}\right)

Now,

X=A^{-1}\,B

X=\frac{-1}{31}\left(\begin{array}{ccc}3&-24&19\\-8&2&1\\-5&9&-11\end{array}\right)\left(\begin{array}{c}6\\5\\7\end{array}\right)

X=\frac{-1}{31}\left(\begin{array}{c}18-120+133\\-48+10+7\\-30+45-77\end{array}\right)\left

X=\frac{-1}{31}\left(\begin{array}{c}31\\-31\\-62\end{array}\right)\left

X=\left(\begin{array}{c}-1\\1\\2\end{array}\right)\left

\implies\,\left(\begin{array}{c}x\\y\\z\end{array}\right)=\left(\begin{array}{c}-1\\1\\2\end{array}\right)\left

\thereforeThe solution is

x=-1, y=1 and z=2

Similar questions