Math, asked by yyashika02, 7 months ago

measure of adjacent angles of parallelogram are (5 x -7)⁰ and (4 x + 25)⁰ find the value of x​

Answers

Answered by anurajprasadgupta293
1

Answer:

Ist angle =(5x-7)°

2nd angle =(4x+25)°

A/Q

Ist angle +2nd angle =180 [ sum of adjacent angle

is 180°]

(5x-7)°+(4x+25)°=180°

5x-7+4x+25=180°

9x+18=180°

9x=180°-18°

9x = 162°

x=162/9

x=18° ( ans )

Answered by MrHyper
91

\huge\rm\orange{anSwer:}

{}

\bf{{\underline{Given}}:}

  • Measure of the adjacent angles of a parallelogram are \sf{(5x-7)°} and \sf{(4x+25°)}

\bf{{\underline{To~find}}:}

  • The value of ‛ x ’

\bf{{\underline{Here,~we~know~that}}:}

  • The sum of two adjacent angles in a parallelogram are \sf{180°}

\bf{{\underline{Solution}}:}

 \sf \:  \:  \:  \: \:  \:   (5x - 7) + (4x + 25) = 180 \\  \sf :  \longmapsto 5x - 7 + 4x + 25 = 180 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \\  \sf :  \longmapsto (5x + 4x) + ( - 7 + 25) = 180 \\  \sf :  \longmapsto 9x + 18 = 180 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf :  \longmapsto 9x = 180 - 18\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf :  \longmapsto 9x = 162\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf :  \longmapsto x =  \frac{162}{9} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \\  \sf :  \longmapsto x = \orange{ \underline{ \boxed{ \bf 18}}}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\bf\therefore{{\underline{Required~answer}}:}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf x = \orange{ \underline{ \boxed{ \bf 18}}}

Similar questions