Math, asked by Nikunjgrg6127, 2 months ago

Measurement of the angles of a triangle are represented by (3×-20),(7×+30) and (2×+50) find x

Answers

Answered by SachinGupta01
5

\bf \underline{ \underline{\maltese\:Given} }

 \sf Measurement \: of \:the \:angles\: of \:a \:triangle \:are :

 \sf  \implies(3x-20) \:  ,  \: (7x+30)  \:  ,\:   (2x+50)

\bf \underline{\underline{\maltese\: To \: find }}

 \sf \implies Value  \: of \:  x =  \: ?

\bf \underline{\underline{\maltese\: Solution }}

 \sf As \:  we \:  know \:  that,

 \underline{ \boxed{ \sf The  \: sum  \: of  \: the  \: three  \: angles  \: of  \:  triangle  \: is= 180^{\circ} }}

 \bf \underline{ Now},

 \sf  \implies(3x-20) \:  +  \: (7x+30)  \:  + \:   (2x+50) = 180^{\circ}

 \rm \underline{ Add \:  3x \:  and  \: 7x }

 \sf  \implies10x-20+30  \:  + \:   2x+50= 180^{\circ}

 \rm \underline{ Add \:  10x \:  and  \: 2x }

 \sf  \implies 12x-20+30  \:   +50= 180^{\circ}

 \rm \underline{ Simplify \:  by \:  adding \:  numbers }

 \sf  \implies 12x+60 = 180^{\circ}

 \sf  \implies 12x= 180 - 60

 \sf  \implies 12x= 120

 \sf  \implies x=   \cancel\dfrac{120}{12}

 \sf  \implies x=   10

 \underline{\boxed{ \bf \red{Therefore, the  \: value  \: of \:  x \:  is \:  10.}} }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bf \underline{\underline{\maltese\: Verification }}

 \sf  \implies(3x-20) \:  +  \: (7x+30)  \:  + \:   (2x+50) = 180^{\circ}

 \rm \underline{ Write  \: 10 \:  instead  \: of \:  x  }

 \sf  \implies(3 \times 10-20) \:  +  \: (7 \times 10+30)  \:  + \:   (2 \times 10+50) = 180^{\circ}

 \sf  \implies(30-20) \:  +  \: (70+30)  \:  + \:   (20+50) = 180^{\circ}

 \sf  \implies(10) \:  +  \: (100)  \:  + \:   (70) = 180^{\circ}

 \sf  \implies10  +  100 +  70 = 180^{\circ}

 \sf  \implies180 = 180^{\circ}

 \bf  \underline{Hence  \: verified \:  ! }

Similar questions