Math, asked by IILittleHeartll, 5 hours ago

Mention the condition for validity of the expansion and expand (2-3x)^-3 as far as the term containing x^4.​

Answers

Answered by BrainlyHH
2

Answer :-

 {(2 - 3x)}^{ - 3}  \: can \: be \: written \: as \:  -

 =  {2}^{ - 3}  {[1 -  \frac{3}{2} x]}^{ - 3}

 =  \frac{1}{8}  {[1 -  \frac{3}{2} x]}^{ - 3}

The expansion is valid when

 | \frac{3}{2}x |  < 1 \:  \: i.e \: when \:  |x|  <  \frac{2}{3}

The required expansion is :-

 {(2 - 3x)}^{ - 3}  =  \frac{1}{8}  {[ 1 -  \frac{3}{2} x]}^{ - 3}

 = \frac{1}{8} [1 + ( - 3)(  - \frac{3}{2} x)   +  \frac{( - 3)( - 4)}{2!} {(  -  \frac{3}{2} x)}^{2}  \\ +  \frac{( - 3)( - 4)( - 5)}{3!}(  {  - \frac{3}{2}x })^{3}  +  \frac{( - 3)( - 4)( - 5)( - 6)}{4!} (  -  { \frac{ 3}{2} x)}^{4} ]

 =  \frac{1}{8} [1 +  \frac{9x}{2}  +  \frac{ {27x}^{2} }{2}  +  \frac{ {135x}^{3} }{4}  +  \frac{ {1215x}^{4} }{16}  +   -  - ]

 = [ \frac{1}{8}  +  \frac{9x}{16}  +  \frac{ {27x}^{2} }{16}  +  \frac{ {135x}^{3} }{32}  +  \frac{ {1215x}^{4} }{128}  +   -  -  - ]

So , the Required answer is ,

 = [ \frac{1}{8}  +  \frac{9x}{16}  +  \frac{ {27x}^{2} }{16}  +  \frac{ {135x}^{3} }{32}  +  \frac{ {1215x}^{4} }{128}  +   -  -  - ]

Similar questions