Math, asked by vrindasomani07, 2 months ago

Minimize z = 8x +10y Subject to
2x +y > 7, 2x + 3y > 15, y> 2, x>0, y> 0​

Answers

Answered by amansharma264
5

EXPLANATION.

Minimize : z = 8x + 10y.

⇒ 2x + y ≥ 7. - - - - - (1).

⇒ 2x + 3y ≥ 15. - - - - - (2).

⇒ y ≥ 2. - - - - - (3).

⇒ x > 0  and  y > 0.

As we know that,

We can write equation as,

⇒ 2x + y = 7. - - - - - (1).

⇒ 2x + 3y = 15. - - - - - (2).

⇒ y = 2. - - - - - (3).

From equation (1), we get.

⇒ 2x + y = 7. - - - - - (1).

Put the value of x = 0 in the equation, we get.

⇒ 2(0) + y = 7.

⇒ y = 7.

Their Co-ordinates = (0,7).

Put the value of y = 0 in the equation, we get.

⇒ 2x + (0) = 7.

⇒ 2x = 7.

⇒ x = 7/2.

⇒ x = 3.5.

Their Co-ordinates = (3.5,0).

From equation (2), we get.

⇒ 2x + 3y = 15. - - - - - (2).

Put the value of x = 0 in the equation, we get.

⇒ 2(0) + 3y = 15.

⇒ 3y = 15.

⇒ y = 5.

Their Co-ordinates = (0,5).

Put the value of y = 0 in the equation, we get.

⇒ 2x + 3(0) = 15.

⇒ 2x = 15.

⇒ x = 15/2.

⇒ x = 7.5.

Their Co-ordinates = (7.5,0).

From equation (3), we get.

⇒ y = 2. - - - - - (3).

Their Co-ordinates = (0,2).

This three curve intersects at a point = (1.5,4) & (2.5,2) & (4.5,2).

Minimize : z = 8x + 10y.

(1) = Co-ordinates = (1.5,4).

⇒ z = 8(1.5) + 10(4).

⇒ z = 12 + 40.

⇒ z = 52.

(2) = Co-ordinates = (4.5,2).

⇒ z = 8(4.5) + 10(2).

⇒ z = 36 + 20.

⇒ z = 56.

(3) = Co-ordinates = (0,7).

⇒ z = 8(0) + 10(7).

⇒ z = 70.

z is minimum at Co-ordinates = (1.5,4) = 52.

Attachments:
Similar questions