Math, asked by macshubham2236, 11 months ago

Minimum value of 27 tan^2 theta+ 3 cot^2 theta

Answers

Answered by pranoythelegend77
9

Answer:

Step-by-step explanation:

You can use the concept of AM >= GM to solve this

take numbers as tan^2theta,tan^2theta,tan^2theta….27 times and cot^2theta,cot^2theta,cot^2theta

So we will get

[27 tan^2 theta + 3 cot^2 theta]/ 30 >= {27tan^2 theta* 3 cot^2 theta}1/2

27 tan^2 theta + 3 cot^2 theta >= 9 * 30

Answered by jitumahi435
22

Given:

27 \tan^2 \theta + 3\cot^2 \theta

We have to find, the minimum value of 27 \tan^2 \theta + 3\cot^2 \theta is:

Solution:

We know that,

AM ≥ GM

\dfrac{27 \tan^2 \theta+3\cot^2 \theta}{2} \sqrt{27 \tan^2 \theta.3\cot^2 \theta} [∴ AM = \dfrac{a+b}{2} and GM = \sqrt{ab}]

Using the trigonometric identity:

\cot A = \dfrac{1}{ \tan A}

\dfrac{27 \tan^2 \theta+3\cot^2 \theta}{2} \sqrt{81 \tan^2 \theta.\dfrac{1}{ \tan^2 \theta} }

\dfrac{27 \tan^2 \theta+3\cot^2 \theta}{2} \sqrt{81 }

\dfrac{27 \tan^2 \theta+3\cot^2 \theta}{2} ≥ 9

Multiplying both sides by 2, we get

27 \tan^2 \theta + 3\cot^2 \theta ≥ 9 × 2

27 \tan^2 \theta + 3\cot^2 \theta ≥ 18

The minimum value of 27 \tan^2 \theta + 3\cot^2 \theta = 18

Thus, the minimum value of "27 \tan^2 \theta + 3\cot^2 \theta is equal to 18".

Similar questions