Minimum value of f(x) = 6x^3 - 45x^2 +108x + 2/ 2x^3 - 15x^2 + 36x + 1 will occur when x is equal to
Answers
Answered by
10
Answer:
x = 3
Step-by-step explanation:
Minimum value of f(x) = 6x^3 - 45x^2 +108x + 2/ 2x^3 - 15x^2 + 36x + 1 will occur when x is equal to
f(x) = (6x^3 - 45x^2 +108x + 2)/ (2x^3 - 15x^2 + 36x + 1)
=> f(x) = (6x^3 - 45x^2 +108x + 3 - 1)/ (2x^3 - 15x^2 + 36x + 1)
=> f(x) = (3(2x^3 - 15x^2 +36x + 1) - 1)/ (2x^3 - 15x^2 + 36x + 1)
=> f(x) = 3 - 1/(2x^3 - 15x^2 + 36x + 1)
f(x) would be minimum if
2x^3 - 15x^2 + 36x + 1 is + ve & least
g(x) = 2x^3 - 15x^2 + 36x + 1
g'(x) = 6x² - 30x + 36
g''(x) = 12x - 30
6x² - 30x + 36 = 0
=> x² - 5x + 6 = 0
=> x = 2 & 3
g''(x) is -ve if x = 2
g''(x) is +ve if x = 3
x = 3
Similar questions
English,
6 months ago
Math,
6 months ago
Social Sciences,
6 months ago
History,
1 year ago
Science,
1 year ago