Math, asked by samantamithun86, 11 months ago

minus 3 by 2 to the power minus 1 into 2 by 3 to the power 2 divided by 2 by 3 to the power minus 1 + 3 by 2 ​

Answers

Answered by pratyushsharma697
0

Step-by-step explanation:

We define a negative power as the multiplicative inverse of the base raised to the positive opposite of the power:

x^{-n}=\dfrac{1}{x^n}x  

−n

=  

x  

n

 

1

​  

x, start superscript, minus, n, end superscript, equals, start fraction, 1, divided by, x, start superscript, n, end superscript, end fraction

Want to learn more about this definition? Check out this video.

Examples

3^{-5}=\dfrac{1}{3^5}3  

−5

=  

3  

5

 

1

​  

3, start superscript, minus, 5, end superscript, equals, start fraction, 1, divided by, 3, start superscript, 5, end superscript, end fraction

\dfrac{1}{2^8}=2^{-8}  

2  

8

 

1

​  

=2  

−8

start fraction, 1, divided by, 2, start superscript, 8, end superscript, end fraction, equals, 2, start superscript, minus, 8, end superscript

y^{-2}=\dfrac{1}{y^{2}}y  

−2

=  

y  

2

 

1

​  

y, start superscript, minus, 2, end superscript, equals, start fraction, 1, divided by, y, squared, end fraction

\left(\dfrac{8}{6}\right)^{-3}=\left(\dfrac{6}{8}\right)^{3}(  

6

8

​  

)  

−3

=(  

8

6

​  

)  

3

left parenthesis, start fraction, 8, divided by, 6, end fraction, right parenthesis, start superscript, minus, 3, end superscript, equals, left parenthesis, start fraction, 6, divided by, 8, end fraction, right parenthesis, cubed

Practice

PROBLEM 1

Select the equivalent expression.

4^{-3}=?4  

−3

=?4, start superscript, minus, 3, end superscript, equals, question mark

Choose 1 answer:

Choose 1 answer:

(Choice A)

A

\dfrac{1}{4^{3}}  

4  

3

 

1

​  

start fraction, 1, divided by, 4, cubed, end fraction

(Choice B)

B

\dfrac{1^3}{4}  

4

1  

3

 

​  

start fraction, 1, cubed, divided by, 4, end fraction

(Choice C)

C

-4^{3}−4  

3

minus, 4, cubed

Explain

Want to try more problems like these? Check out this exercise.

Some intuition

So why do we define negative exponents this way? Here are a couple of justifications:

Justification #1: Patterns

nnn 2^n2  

n

2, start superscript, n, end superscript

333 2^3=82  

3

=82, cubed, equals, 8

222 2^2=42  

2

=42, squared, equals, 4

111 2^1=22  

1

=22, start superscript, 1, end superscript, equals, 2

000 2^0=12  

0

=12, start superscript, 0, end superscript, equals, 1

-1−1minus, 1 2^{-1}=\dfrac122  

−1

=  

2

1

​  

2, start superscript, minus, 1, end superscript, equals, start fraction, 1, divided by, 2, end fraction

-2−2minus, 2 2^{-2}=\dfrac142  

−2

=  

4

1

​  

2, start superscript, minus, 2, end superscript, equals, start fraction, 1, divided by, 4, end fraction

Notice how 2^n2  

n

2, start superscript, n, end superscript is divided by 222 each time we reduce nnn. This pattern continues even when nnn is zero or negative.

Justification #2: Exponent properties

Recall that \dfrac{x^n}{x^m}=x^{n-m}  

x  

m

 

x  

n

 

​  

=x  

n−m

start fraction, x, start superscript, n, end superscript, divided by, x, start superscript, m, end superscript, end fraction, equals, x, start superscript, n, minus, m, end superscript. So...

\begin{aligned} \dfrac{2^2}{2^3}&=2^{2-3} \\\\ &=2^{-1} \end{aligned}  

2  

3

 

2  

2

 

​  

 

​  

 

=2  

2−3

 

=2  

−1

 

​  

 

We also know that

\begin{aligned} \dfrac{2^2}{2^3}&=\dfrac{\cancel 2\cdot\cancel 2}{\cancel 2\cdot\cancel 2\cdot 2} \\\\ &=\dfrac12 \end{aligned}  

2  

3

 

2  

2

 

​  

 

​  

 

=  

2

​  

⋅  

2

​  

⋅2

2

​  

⋅  

2

​  

 

​  

 

=  

2

1

​  

 

​  

 

And so we get 2^{-1}=\dfrac122  

−1

=  

2

1

​  

2, start superscript, minus, 1, end superscript, equals, start fraction, 1, divided by, 2, end fraction.

Also, recall that x^n\cdot x^m=x^{n+m}x  

n

⋅x  

m

=x  

n+m

x, start superscript, n, end superscript, dot, x, start superscript, m, end superscript, equals, x, start superscript, n, plus, m, end superscript. So...

\begin{aligned} 2^2\cdot 2^{-2}&=2^{2+(-2)} \\\\ &=2^0 \\\\ &=1 \end{aligned}  

2  

2

⋅2  

−2

 

​  

 

=2  

2+(−2)

 

=2  

0

 

=1

​  

 

And indeed, according to the definition...

\begin{aligned} 2^2\cdot 2^{-2}&=2^2\cdot\dfrac{1}{2^2} \\\\ &=\dfrac{2^2}{2^2} \\\\ &=1 \end{aligned}  

2  

2

⋅2  

−2

 

​  

 

=2  

2

⋅  

2  

2

 

1

​  

 

=  

2  

2

 

2  

2

 

​  

 

=1

Answered by prabhavitpal624
1

Answer:

Bhai Mujhe nahi aatavfgnkfbhbhhggh

to

ghh

hjj

Similar questions