Physics, asked by yaruq678, 11 months ago

mirror formula derivation​

Answers

Answered by Anonymous
2

Answer:

the derivation is in the picture..

I HOPE THIS MAY HELP U..

#gundi..

follow me..✌✌

Attachments:
Answered by Anonymous
6

\Large\color{darkblue}\underline{\underline{\sf Mirror \: Formula-}}

Refer to the attachment for the Figure.

━━━━━━━━━━━━━━━━━━━━━━━━━━

Given

PB = - u

PC = - R

PB' = - v

PF = -f

\color{darkblue}\underline{\sf In\: \triangle ABC \: and \: \triangle A'B'C}

\implies{\sf \dfrac{AB}{A'B'}=\dfrac{BC}{B'C}\:\:\:\:→(1) }

\color{darkblue}\underline{\sf In \: \triangle MNF \: and \: \triangle A'B'F-}

\implies{\sf \dfrac{MN}{A'B'}=\dfrac{NF}{B'F} }

N = P

\implies{\sf \dfrac{MP}{A'B'}=\dfrac{PF}{B'F}\:\:\:\:→(2) }

\color{darkblue}\underline{\underline{\sf From\: equation \: 1 \; and \;2-}}

\implies{\sf \dfrac{BC}{B'C}=\dfrac{PF}{B'F} }

\implies{\sf \dfrac{PB-PC}{PC-PB'}=\dfrac{PF}{PB'-PF} }

\implies{\sf \dfrac{-u-(-R)}{-R-(-v)}=\dfrac{-f}{-v-(-f)} }

\implies{\sf \dfrac{-u+R}{-R+v}=\dfrac{-f}{-v+f}}

\color{green}\underline{\sf We \; know \; that \: R = 2f}

\implies{\sf \dfrac{-u+2f}{-2f+v}=\dfrac{-f}{-v+f}}

\implies{\sf (-u+2f)(-v+f)=-f(-2f+v)}

\implies{\sf uv-fv-2fv+2f^2=2f^2-fv}

\implies{\sf uv-fu=fv}

\underline{\sf On \: dividing\:uvf\:both\:side-}}

\implies{\sf \dfrac{uv}{uvf}-\dfrac{fu}{uvf}=\dfrac{fv}{uvf}}

\implies{\sf \dfrac{1}{f}-\dfrac{1}{v}=\dfrac{1}{u}}

\Large\color{red}\underline{\boxed{\sf \dfrac{1}{f}=\dfrac{1}{v}+\dfrac{1}{u}}}.

Attachments:
Similar questions