Physics, asked by sahilajavaid50431, 17 days ago

[ML^2T^-2] is the dimensional formula for (1 Point) [a] moment of inertia, [b] pressure, [c] power, [d] density

Answers

Answered by Anonymous
13

Given :-

 \sf[M {}^{1}  L {}^{2}  T {}^{ - 2}   ] is the dimensional formula for :-

Solution:-

Let's try to check the four options of their dimensional formulae

Moment of inertia :-

Moment of inertia is [Mass] × [Radius of gyration]²

  \:  \:  \sf \: D imensional \: formula \: for \:  \pink{Mass} \: is \:  \pink{[M {}^{1}  ]}

 \:  \:   \sf \: D imensional \: formula \: for \: \pink{ Radius \: of \: gyration} \:  \: is \:  \pink{ [ L {}^{1}   ]}

So,

 \sf \: M oment \: of \: inertia \:  = [M {}^{1}  ][ L {}^{1}  ] {}^{2}

 \boxed{ \sf  \red{\: M oment \: of \: inertia \:  = [M {}^{1}   L  {}^{2} ]}}

__________________________

Pressure :-

 \sf{Pressure  =  \dfrac{force}{area} }

  \:  \:  \sf \: D imensional \: formula \: for \:  \pink{force} \: is \:  \pink{[M {}^{1} L {}^{1} T {}^{ - 2}   ]}

  \:  \:  \sf \: D imensional \: formula \: for \:  \pink{Area} \: is \:  \pink{ [L {}^{2}    ]}

Substituting the values,

 \sf{Pressure  =  \dfrac{[M {}^{1}  L {}^{1} T {}^{ - 2} ]}{{[ L^2]}} }

 \sf{Pressure  =  {[M {}^{1}  L {}^{1} T {}^{ - 2} ]}{{[ L {}^{ - 2} ]}} }

 \sf{Pressure  =  {[M {}^{1}  L {}^{1} T {}^{ - 2} ]}{ L {}^{ - 2} ]} }

 \boxed{ \red{ \sf{Pressure  =  {[M {}^{-1}  L^{-1} T {}^{ - 2} ]}}}}

___________________________

Power :-

Power is (F×V) where, F = force, V= velocity.

  \:  \:  \sf \: D imensional \: formula \: for \:  \pink{Force} \: is \:  \pink{[M {}^{1} L {}^{1} T {}^{ - 2}   ]}

  \:  \:  \sf \: D imensional \: formula \: for \:  \pink{Velocity} \: is \:  \pink{ [L {}^{1} T {}^{ - 1}   ]}

 \sf \: Power = F \times V

 \sf \: Power = [M {}^{1}  L {}^{1} T {}^{ - 2} ] [L {}^{1} T {}^{ - 1}   ]

 \sf \: Power = [M {}^{1}  L {}^{1 + 1} T {}^{ - 2 - 1} ]

 \boxed{ \red{ \sf \: Power = [M {}^{1}  L {}^{2} T {}^{ - 3} ] }}

___________________________

Density :-

 \sf \: Density  =  \dfrac{Mass}{volume}

  \:  \:  \sf \: D imensional \: formula \: for \:  \pink{mass} \: is \:  \pink{[M {}^{1}  ]}

  \:  \:  \sf \: D imensional \: formula \: for \:  \pink{Volume} \: is \:  \pink{ [L {}^{3}    ]}

 \sf \: Density  =  \dfrac{[M {}^{1}  ]}{ [L {}^{3}    ]}

 \boxed{  \red{\sf \: Density  =  {[M {}^{1}  }{ L {}^{ - 3}    ]} }}

Since there is no correct option.

Similar questions