Math, asked by shivasinghmohan629, 2 months ago

Moderators

⭐ Branily star

❤️ other best user

Question <<<

please answer this question jaymaharastra3210 please answer this question

no spam

no spam

no spam​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​

Attachments:

Answers

Answered by sethrollins13
65

Given :

  • A quadratic polynomial 4x² - x - 5

To Find :

  • Zeroes of the polynomial and verify the relationship between the zeroes and the coefficients .

Solution :

\longmapsto\tt\bf{{4x}^{2}-x-5=0}

By Splitting Middle Term :

\longmapsto\tt{{4x}^{2}-(5x-4x)+5=0}

\longmapsto\tt{{4x}^{2}-5x+4x+5=0}

\longmapsto\tt{x(4x-5)+1(4x-5)=0}

\longmapsto\tt{(4x-5)\:\:(x+1=0}</p><p>

  • x =5/4
  • x = -1

So , 5/4 and -1 are the zeroes of Quadratic Polynomial 4x²-x-5 .

Here :

  • a = 4
  • b = -1
  • c = -5

Sum of Zeroes :

</p><p>\longmapsto\tt{\alpha+\beta=\dfrac{-b}{a}}

\longmapsto\tt{\dfrac{5}{4}+(-1)=\dfrac{-(-1)}{4}}

\longmapsto\tt{\dfrac{5-4}{4}=\dfrac{1}{4}}

\longmapsto\tt\bf{\dfrac{1}{4}=\dfrac{1}{4}}

Product of Zeroes :

\longmapsto\tt{\alpha\beta=\dfrac{c}{a}}

\longmapsto\tt{\dfrac{5}{4}\times{-1}=\dfrac{-5}{4}}

\longmapsto\tt\bf{\dfrac{-5}{4}=\dfrac{-5}{4}}

HENCE VERIFIED

Answered by MяMαgıcıαη
70

\red{\bigstar} G I V E N

\:

  • Polynomial, P(x) = 4x² - x - 5.

\:

\orange{\bigstar} T OF I N D

\:

  • Zeroes of the given polynomial (4x² - x - 5), also we have to verify relationship between it's zeroes and the coefficients.

\:

\blue{\bigstar} S O L U T I O N

\:

Finding zeroes of given polynomial (α and β) ::

\\ \dashrightarrow\:\sf 4x^2 + 4x - 5x - 5 = 0

\\ \dashrightarrow\:\sf 4x\big(x + 1\big) - 5\big(x + 1\big) = 0

\\ \dashrightarrow\:\sf \big (4x - 5\big) \big(x + 1\big) = 0

\\ \dashrightarrow\:\sf 4x - 5 = 0\:\: or \:\:x + 1 = 0

\\ \dashrightarrow\:\sf 4x = 0 + 5 \:\:or \:\:x = 0 - 1

\\ \dashrightarrow\:\sf 4x = 5 \:\:or \:\:x = -1

\\ \dashrightarrow\:\bf \pink{x = \dfrac{5}{4}\:\: or \:\:x = -1}

\:

\small\therefore\:{\underline{\frak{Zeroes\:of\:given\:polynomial\:\big(\alpha\:and\:\beta\big)\: are \:\bf{\dfrac{5}{4}}\:\frak{and}\:\bf{-1.}}}}

\:

Now,

\:

Verifying relationship between zeroes and coefficients of given polynomial ::

\:

We know that ::

\:

\quad\odot\:\boxed{\begin{array}{c} \\ \tiny\pink{\bigstar}\:\bf\blue{ Sum\:of\:zeroes\:of\:quadratic\:polynomial = \dfrac{-b}{a}}  \\\\ \tiny\pink{\bigstar}\:\bf\green{ Product\:of\:zeroes\:of\:quadratic\:polynomial = \dfrac{c}{a}} \\\\ \end{array}}

\:

So,

\\ \longrightarrow\:\sf \alpha + \beta = \dfrac{-b}{a},\: \alpha\beta = \dfrac{c}{a}

\:

We have ::

\:

  • α = 5/4

  • β = -1

  • a = coefficient of x² = 4

  • b = coefficient of x = -1

  • c = constant term = -5

\:

Putting all known values ::

\\ \longrightarrow\:\sf \dfrac{5}{4} + \big(-1\big) = \dfrac{-\big(-1\big)}{4},\: \dfrac{5}{4} \:\times\:\big (-1\big) = \dfrac{-5}{4}

\\ \longrightarrow\:\sf \dfrac{5}{4} - 1 = \dfrac{1}{4},\: \dfrac{ -5}{4} = \dfrac{-5}{4}

\\ \longrightarrow\:\sf \dfrac{5 - 4}{4} = \dfrac{1}{4},\:\dfrac{-5}{4} = \dfrac{-5}{4}

\\ \longrightarrow\:\bf \purple{\dfrac{1}{4} = \dfrac{1}{4},\:\dfrac{-5}{4} = \dfrac{-5}{4}}

\:

\green{\bigstar} H E N C E,V E R I F I E D

Similar questions